
Actions for dynamical fermion simulations:
are we ready to go?
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Actions

• Wilson fermions

– non-perturbatively improved fermion action
– various gauge actions (Plaquette, Symanzik, RG-improved)

• Staggered fermions

– improved fermion action (Asqtad)
– various gauge actions

• Domain wall and overlap fermions

– RG improved gauge actions
– fermion actions with eigenvalue projection

• Designer actions

– FLIC, Hypercube (various versions) + many more

→ have to agree in continuum limit: provide valuable cross check

→ don’t waste resources

2



rigorous actions

• reflection positivity, Osterwalder-Schrader positivity,
positive transfer matrix ⇒ reconstruction theorem

– Wilson action
Lüscher, Commun.Math.Phys.54:283,1977; for r = 1, κ < 1/6
( – tmQCD )

– (naive) staggered fermions:
Sharatchandra, Thun, Weisz,Nucl.Phys.B192:205,1981; Smit,

Nucl.Phys.Proc.Suppl.20:542-545,1991 ; Palumbi, hep-lat/0208005

positive transfer matrix for 2 lattice spacings
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not rigorous but local actions

• no proof of reflection positivity or construction of positive transfer matrix

• ultra local actions

– Designer actions, I will take as example FLIC∗

– Symanzik improved actions
– truncated perfect action

• exponentially localized

– overlap
– domain wall
– perfect action

* Fat Link Irrelevant Clover fermions

DFLIC = 1
u0
∇µγµ + 1

2u
(fl)
0

(
∆(fl) − 1

2u
3(fl)
0

σ · F (fl)

)
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Non-local actions?

candidate: taking square root of staggered fermion matrix

test following Hernández, Lüscher, K.J.

Source point

ηα(x) = 1 for x = 1, α = 1 ηα(x) = 0 else

compute for some operator A†A

Ψ(x) =
√
A†Aη(x)

test whether couplings of the operator decay exponential

f(r) = max {‖Ψ(x)‖; ‖x− y‖taxi = r}

test for fixed value of lattice spacing a; positive outcome:

f(r) = e−r/rlocal
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locality in continuum limit?

possibility I

rlocal ·mπ = constant; for a→ 0, mπ fixed

⇒ obtain a continuum theory with rlocal ∝ ξπ non-local theory on the scale of pion
Compton wave length ⇒ unacceptable

possibility II

rlocal ·mπ → 0 for a→ 0, mπ fixed

⇒ rlocal/a = const obtain a point local continuum theory
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A first look

use (F. Knechtli, K.J.): A = Wilson operator,
√
A†A = Pn,ε(A†A)

fix r0 ·mπ = 1.6, various β = 6, 6.2, 6.45
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rlocal ·mπ
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red crosses: take rlocal at β = 6.0 and scale it according to change of lattice spacing

My personal wishlist I
precise check for localization of staggered fermions
work in progress, Della Morte, Knechtli, K.J.
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C, P & T

A warning from M. Creutz

spontaneous CP violation might be possible for mu → 0 tuning it negative

← miss this possibility when taking square roots?
← miss interesting part of physics?

A warning from Klinkhamer and J. Schilling

for a special class of gauge fields (U4(x, x4) = 1, Um(x, x4) = Um(x)) chiral gauge
theories from overlap fermions not CPT invariant

← violation of reflection positivity? Consequences?
see also Fujukawa, Ishibashi, Suzuki
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Costs of dynamical fermions simulations
see panel discussion in Lattice2001, Berlin, 2001

formula C ∝
(
mπ
mρ

)−zπ
(L)zL (a)−za

zπ = 6

zL = 5

za = 7
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physical contact to
point χPT (?)

⇒ use chiral perturbation theory (χPT) to extrapolate to physical point
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Wilson versus staggered at fixed box length L = 2.5 fm

a = 0.09 fm a = 0.045 fm
staggered: measured staggered: extrapolated

full line: Wilson; dashed line: staggered; dashed line: Wilson/3
MILC data, thanks to S. Gottlieb
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Exact vs. inexact: why inexact?

Exact algorithm PHMC algorithm for Nf = 3 Aoki et.al. (JLQCD) hep-lat/0208058

(see also T. Kennedy)
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R old
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→ extraplation to δτ = 0 difficult

→ treat (A†A)1/n by polynomial

→ noisy Metropolis step or correction factor
inversion of (A†A)1/n by Lancsoz method

→ cost of exact algorithm ≈ in-exact

My personal wishlist II
Use and test exact odd flavour algorithms
fair comparison of exact algorithms, continuum approach
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How to simulate a designer action

→ complicated interactions, fattening

• first way a la Hasenbusch; Hasenfratz and Knechtli + many others

i) U → U ′ according to gauge field action
ii) det(A′†A′)/det(A†A) → accept/reject; correction factor
iii) needs smearing/fattening

improvements: break up of determinant, ultraviolett filtering, · · ·

• second way a la W. Kamleh

re-unitarization through X/
√
X†X

expand 1/
√
X†X

use chain rule to go from fattended link U (n) to original link U (0)
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A problem of principle:
the eigenvalue distribution from Random matrix Theory
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⇒ small eigenvalues have to appear, checks in quenched simulations
Bietenholz, Shcheredin, K.J., QCDSF, Weisz et.al.

⇒ can lead to large statistical fluctuations or difficulties in the simulations
when approaching the physical point
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Perturbation theory
(review Capitani, hep-lat/0211036)

Analysis for Wilson fermions Bochicchio, Maiani, Martinelli, Rossi, Testa

Analysis for staggered Sharatchandra, Thun, Weisz; Goltermann, Smit, Vink

Designer actions

more links of course more complicated but doable

fattening/smearing/blocking →∫
d4q

(2π)4I(q)→
∫

d4q
(2π)4

(
1− c

6q̂
2
)2N

I(q)

c < 1 smearing coefficient, N number of smearing steps

tadpole contribution substantially reduced:
12.23g2

0/(16π2)CF → 0.35g2
0/(16π2)CF
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Reisz Power Counting Theorem (Reisz, Lüscher)

statement is that the lattice integral

I =
∫ π/a
−π/a

d4k
(2π)4

V (k,m,a)
C(k,m,a)

exists in the continuum limit, if (among others) the condition

|C(l,m, a)| ≥ A(l̂2 +m2)

is fulfilled for a small enough and some positive value of A

Wilson(r = 1) C = (1 + am)p̂2 +m2 + 1
2a

2
∑
µ<ν p̂

2
µp̂

2
ν

Staggered C =
∑
µ sin2 kµ +m2 =

∑
µ k̂

2 − a2

4

∑
µ k̂

4 +m2

My personal wishlist III
construct a “Reisz theorem” for staggered fermions
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Inconsistencies?

S. Aoki, hep-lat/0011074, Lattice2000 review

PKS: plaquette action, staggered fermions
PW: plaquette action, Wilson fermions
RC(TP): RG gauge action, tadpole improved Wilson
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→ different continuum results even at large masses!

17



The continuum extrapolation

S. Aoki, hep-lat/0011074, Lattice review
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Large lattice artefacts/alternative fits?

K.J. and J. Zanotti

fit may not not be the final one, but it is a possibility

My personal wishlist IV
precise scaling analysis for various fermion
actions in the quenched approximation
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A scaling plot

thanks to J. Zanotti

(talks by A. & P. Hasenfratz for scaling tests of Hyp, Asqtad, CI and TP)
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Problems in practical dynamical simulations:
Gauge actions

I: RG action → not reflection positive
⇒ complex energies

Necco, Sommer

free field analysis: t� tmin =

 0.5 Symanzik
0.9 Iwasaki
1.7 DBW2
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II: large lattice artefacts possible

⇒ two action method?

III: difficulty of sampling topological charge sectors
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Problems in practical dynamical simulations: Wilson

Simulations with Nf = 3 improved fermions CP-PACS
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Wilson gauge RG improved action
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Simulations with Nf = 2 Wilson gauge non-perturbatively improved fermions (K.J.)

• hysteresis effect

• effects almost independent from values 1 < csw < 2

• small lattice simulations
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(unexpected) large lattice artefacts in quark mass
LPHAA

Collaboration

Wilson gauge, non-perturbatively improved Wilson fermions

Non-perturbatively improved Wilson

m(∞) = m(16), W-W: Wilson action

My personal wishlist VI
Study and understand T = 0 phase diagram of QCD
Investigate different gauge actions
understand nature of phase transition
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W-KS: x W-W: + I-SW: o W-SWimpr: ∗

R(y) for yref = 0.45, a ≈ 0.1 fm
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Large effects?

KS-fermions various a ≥ 0.1 fm
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Large cutoff effects!

R. Sommer

r0(x)/r0(x = 0.45)

x=(mπ/mρ)2
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Problems in practical dynamical simulations: Staggered

Eigenvalue distribution of staggered operator in comparison to Random matrix
theory
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Farchioni, Hip, Lang

see also: Damgaard, Heller, Niclasen, Rummukainen, Berg, Markum, Pullirsch, Wettig

does problem disapear for a� 1? How do improved actions behave?
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Results (nevertheless) Wilson

• comparison to chiral perturbation theory

• finite size effects

• status of running quark mass

• towards Nf = 3

• meson spectrum
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Chiral Perturbation theory

two strategies:

1.) extrapolate to continuum limit and fit then to predictions of χPT

advantages/disadvantages

• chiral invariance ensured

• direct comparison possible

• computationally demanding

in practise (χPT practitioners): lattice data at non-vanishing lattice spacing are
compared to continuum formulae

lattice data from chirally non-invariant lattice formulations
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Example Bernard, Hemmert, Meissner
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• 4-loop results (quadratic in quark mass) keeping consistently chiral symmetry

• parameters of chiral lagrangian fixed at physical point

• “improvement term” added but only one!!

• data (CP-PACS) at smallest values of a availabe: close enough to the
continuum? (see later)
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size of 4-loop corrections Leinweber, Thomas, Young (“pion cloud”)

BHM: We stress again that applying the expressions to pion masses above 600 MeV
is only done for illustrative purposes, for a realistic chiral extrapolation smaller pion
masses are mandatory

• it is possible to model lattice data

• clearly want, however, pure chiral perturbation theory
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Chiral Perturbation theory

2.) take discretization effects into account Sharpe

Wilson fermions Baer, Rupak, Shoresh; Aoki

⇒ duplication of low energy constants

→ physical LEC l4, · · · , l8 ↔ w4, · · · , w8

Staggered fermions Aubin, Bernard, Goltermann, Lee, Sharpe + · · ·

start with Lee-Sharpe lagrangian

L = f2

8 tr(∂µΣ∂µΣ†)− 1
4µmf

2tr(Σ + Σ†) + 2m2
0

3 (ΦI)2 + a2V

Σ = exp(iφ/f), , φ =
∑16
a φaTa

ΦI singlet field

V staggered flavor breaking potoential → six terms with coefficients C1, · · · , C6
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Chiral Perturbation theory

advantages/disadvantages

• lattice discretization effects can be (partly) absorbed

• allows for hybrid simulations such as improved fermions dynamical,
overlap quenched

• (many) new parameters

• dependence of new fit parameters on g0
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Wilson examples
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164 lattice
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χR = 32.0(2.4)

σ = 0.848
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fit
eta

M2
π/mq (Aoki) double ratio (Farchioni,Gebert,

Montvay,Scholz,Scorzato)

RfV V = M2
π(sea)/mq(sea)

M2
π(valence)/mq(valence)

→ amazing cut-off cancelations in double ratios a = 0.28fm (!)
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Chiral Perturbation theory

remarks: it would be important to disentangle

• sea quark effects: plot only sea quark dependence

• a effects: de-double double ratios

a problem for universal LEC: assume

Aoki: shifting β = 2.1→ β = 2.2, Λ = 0.694(20)→ Λ = 0.128(88)

DESY group: different definitions of lattice spacing a :
Λ3/f0 = 30.4(2.9) or Λ3/f0 = 6.51(57)

results are a warning that more studies are needed
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Chiral Perturbation theory

A staggered example (thanks to C. Bernard)

fπ, fK agree with experiment

combinaton of GL coefficients seem
to rule out mu = 0 scenario
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Two notes:

First: taking
√

det amounts in SχPT to a partially quenched situation
with 2 quenched fermions Bernard, Golternman

det1/4 with u,d,s quarks means in 1-loop of SχPT

• do SχPT with Nf = 4 flavours; correct by hand: multiply loops by 1/4

generalizable to all orders of SχPT? Bernard

• replica trick: computation with arbitary Nu, Nd, Ns of u,d,s quarks

• correct/tune by hand: set Nu = Nd = Ns = 1/4

Second: nice example of application of χPT (Chandrasekharan, Jiang)

→ very precise computation of condensate and susceptibility using
meron cluster alorithm in strong coupling limit

My personal wishlist V
Need to discuss all these issues of chiral perturbation theory
→ workshop
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Finite size effects

generally M(L)−M = − 3
16π2ML

∫∞
−∞F (iy)e

√
M2
π+y2L

F : π − π forward scattering amplitude in infinite volume

Lüscher’s formula L−3/2e−mπL: leading order of F

corrections: Colangelo, Dürr, Sommer

1
2L
−3/2e−mπL + 1√

2L−3/2e
−
√

2mπL + 1√
3L−3/2e

−
√

3mπL

find (found) in practise M = m∞ + c/L3 (Fukugita, Mino, Okawa, Parisi, Ukawa)
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M = m∞ + c1/L exp(-c2L)

M = m + c/L3/2 exp(-mπL)

M = m + c/L3

Lippert, Orth, Schilling

→ claim: find expected
exponential finite size effects
coeff. of exp. fitted
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Finite size effects from chiral perturbation theory

QCDSF collaboration

chiral perturbation theory result:

δ = 3g2
Am

2
π

16π2F 2

∫
dx
∑
nK0(Ln

√
m2
N0
x2 +m2

π(1− x))

mN0 Nucleon mass in chiral limit

no free parameter! Leading order agrees with Lüscher formula

39



Running quark mass: status

LPHAA
Collaboration

• → averagered over L = 8→ L = 16 and L = 12→ L = 24

• perturbation theory works well (unfortunately!?)

• point for smallest µ/Λ corresponds to large value of coupling (L = max)

• scale still missing
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Towards Nf = 3 dynamical Wilson simulations

→ joint japaneses forces of CP-PACS and JLQCD collaborations

→ RG improved gauge and O(a) improved Wilson fermion action
⇐ phase transition

→ determination of csw non-perturbatively
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→ Schrödinger functional
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Towards Nf = 3 dynamical Wilson simulations:
physical input

L ≈ 1.6fm

-10

-5

0

5

10

(m
-m

ex
p)

/m
ex

p 
[%

]

Nf=3
Nf=0

mK* (K-input) mφ (K-input) mK (φ-input) mK* (φ-input)

→ re-assuring: dynamical results can eliminate systematic uncertainty
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Towards Nf = 3 dynamical Wilson simulations:
meson spectrum
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My personal wishlist VII
Add improved staggered results
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What was left out, with all my apologies

• domainwall fermions RBC

• localization in QCD Golterman, Shamir

• structure functions MIT, SESAM, QCDSF

• topological susceptibility Hart et.al.

• η′ from low-lying eigenmodes SESAM, MIT
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Conclusion

New powerful computers (apeNEXT, QCDOC, PC cluster, comm. supercomputers)

F allow transition to serious dynamical fermion simulations

F they are expensive machines that should be used wisely

→ check that your lattice formulation of continuum theory is okay
→ support and participate in ILDG to share configurations/propagators
→ work hard on algorithmic improvements

what do we answer somebody coming with a really big machine and asks

– what action to choose

– what algorithm to employ
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Conclusion

there are dangerous animals on the lattice that lurk in the dark
← found surprises in dynamical simulations

⇒ try to use always two actions, depending on your question

baryon spectrum, decay constants etc. (heavier quarks):
improved staggred ↔ improved Wilson with (carefully selected) gauge action

very light quarks: chirally improved actions
(truncated fixed point, domain wall with Ls � 1, hypercude,FLIC)
↔ actions with exact chiral symmetry
(overlap, domain wall with Ls � 1)
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