Actions for dynamical fermion simulations: are we ready to go?

Karl Jansen

- Conceptual questions
- Algorithmic questions
- questions in (chiral) perturbation theory
- Practical questions
- some results
- Con(cl)(f)usions

Actions

Wilson fermions

- non-perturbatively improved fermion action
- various gauge actions (Plaquette, Symanzik, RG-improved)

• Staggered fermions

- improved fermion action (Asqtad)
- various gauge actions

Domain wall and overlap fermions

- RG improved gauge actions
- fermion actions with eigenvalue projection

• Designer actions

- FLIC, Hypercube (various versions) + many more
- \rightarrow have to agree in continuum limit: provide valuable cross check
- \rightarrow don't waste resources

rigorous actions

- reflection positivity, Osterwalder-Schrader positivity, positive transfer matrix ⇒ reconstruction theorem
 - Wilson action

Lüscher, Commun.Math.Phys.54:283,1977; for $r=1,\ \kappa<1/6$ ($-\ {\rm tmQCD}$)

- (naive) staggered fermions:

Sharatchandra, Thun, Weisz, Nucl. Phys. B192:205, 1981; Smit, Nucl. Phys. Proc. Suppl. 20:542-545, 1991; Palumbi, hep-lat/0208005 positive transfer matrix for 2 lattice spacings

not rigorous but local actions

• no proof of reflection positivity or construction of positive transfer matrix

• ultra local actions

- Designer actions, I will take as example FLIC*
- Symanzik improved actions
- truncated perfect action

• exponentially localized

- overlap
- domain wall
- perfect action
- * Fat Link Irrelevant Clover fermions

$$D_{\text{FLIC}} = \frac{1}{u_0} \nabla_\mu \gamma_\mu + \frac{1}{2u_0^{(fl)}} \left(\Delta^{(fl)} - \frac{1}{2u_0^{3(fl)}} \sigma \cdot \mathcal{F}^{(fl)} \right)$$

Non-local actions?

candidate: taking square root of staggered fermion matrix

test following Hernández, Lüscher, K.J.

Source point

$$\eta_{\alpha}(x) = 1$$
 for $x = 1, \alpha = 1$ $\eta_{\alpha}(x) = 0$ else

compute for some operator $A^{\dagger}A$

$$\Psi(x) = \sqrt{A^{\dagger}A}\eta(x)$$

test whether couplings of the operator decay exponential

$$f(r) = \max\{\|\Psi(x)\|; \|x - y\|_{\text{taxi}} = r\}$$

test for fixed value of lattice spacing a; positive outcome:

$$f(r) = e^{-r/r_{\text{local}}}$$

locality in continuum limit?

possibility |

$$r_{\text{local}} \cdot m_{\pi} = \text{constant}; \text{ for } a \to 0, m_{\pi} \text{ fixed}$$

 \Rightarrow obtain a continuum theory with $r_{\text{local}} \propto \xi_{\pi}$ non-local theory on the scale of pion Compton wave length \Rightarrow unacceptable

possibility ||

$$r_{\text{local}} \cdot m_{\pi} \to 0 \text{ for } a \to 0, m_{\pi} \text{ fixed}$$

 $\Rightarrow r_{\text{local}}/a = const$ obtain a point local continuum theory

A first look

use (F. Knechtli, K.J.): A = Wilson operator, $\sqrt{A^{\dagger}A} = P_{n,\epsilon}(A^{\dagger}A)$ fix $r_0 \cdot m_{\pi} = 1.6$, various $\beta = 6, 6.2, 6.45$

red crosses: take r_{local} at $\beta = 6.0$ and scale it according to change of lattice spacing

My personal wishlist I precise check for localization of staggered fermions work in progress, Della Morte, Knechtli, K.J.

C, P & T

A warning from M. Creutz

spontaneous CP violation might be possible for $m_u \rightarrow 0$ tuning it negative

miss this possibility when taking square roots?
 miss interesting part of physics?

A warning from Klinkhamer and J. Schilling

for a special class of gauge fields $(U_4(\mathbf{x}, x_4) = 1, U_m(\mathbf{x}, x_4) = U_m(\mathbf{x}))$ chiral gauge theories from overlap fermions not CPT invariant

← violation of reflection positivity? Consequences? see also Fujukawa, Ishibashi, Suzuki

Costs of dynamical fermions simulations

see panel discussion in Lattice2001, Berlin, 2001

 \Rightarrow use chiral perturbation theory (χ PT) to extrapolate to physical point

Wilson versus staggered at fixed box length L = 2.5 fm

a = 0.09 fm staggered: measured

a = 0.045 fm staggered: extrapolated

full line: Wilson; dashed line: staggered; dashed line: Wilson/3 MILC data, thanks to S. Gottlieb

Exact vs. inexact: why inexact?

Exact algorithm PHMC algorithm for $N_f = 3$ Aoki et.al. (JLQCD) hep-lat/0208058 (see also T. Kennedy)

My personal wishlist II

Use and test <u>exact</u> odd flavour algorithms fair comparison of exact algorithms, continuum approach

How to simulate a designer action

- \rightarrow complicated interactions, fattening
- first way a la Hasenbusch; Hasenfratz and Knechtli + many others
- i) $U \rightarrow U'$ according to gauge field action
- ii) $det(A'^{\dagger}A')/det(A^{\dagger}A) \rightarrow accept/reject;$ correction factor
- iii) needs smearing/fattening improvements: break up of determinant, ultraviolett filtering, ····
- second way a la W. Kamleh re-unitarization through $X/\sqrt{X^{\dagger}X}$ expand $1/\sqrt{X^{\dagger}X}$ use chain rule to go from fattended link $U^{(n)}$ to original link $U^{(0)}$

A problem of principle: the eigenvalue distribution from Random matrix Theory

- ⇒ small eigenvalues have to appear, checks in quenched simulations Bietenholz, Shcheredin, K.J., QCDSF, Weisz et.al.
- \Rightarrow can lead to large statistical fluctuations or difficulties in the simulations when approaching the physical point

Perturbation theory (review Capitani, hep-lat/0211036)

Analysis for Wilson fermions Bochicchio, Maiani, Martinelli, Rossi, Testa Analysis for staggered Sharatchandra, Thun, Weisz; Goltermann, Smit, Vink

Designer actions

more links of course more complicated but doable

 $fattening/smearing/blocking \rightarrow$

$$\int \frac{d^4q}{(2\pi)^4} I(q) \to \int \frac{d^4q}{(2\pi)^4} \left(1 - \frac{c}{6}\hat{q}^2\right)^{2N} I(q)$$

c < 1 smearing coefficient, N number of smearing steps

tadpole contribution substantially reduced: $12.23g_0^2/(16\pi^2)C_F \rightarrow 0.35g_0^2/(16\pi^2)C_F$ Reisz Power Counting Theorem

(Reisz, Lüscher)

statement is that the lattice integral

$$I = \int_{-\pi/a}^{\pi/a} \frac{d^4k}{(2\pi)^4} \frac{V(k,m,a)}{C(k,m,a)}$$

exists in the continuum limit, if (among others) the condition

$$|C(l,m,a)| \ge A(\hat{l}^2 + m^2)$$

is fulfilled for a small enough and some positive value of A

Wilson
$$(r = 1)$$
 $C = (1 + am)\hat{p}^2 + m^2 + \frac{1}{2}a^2 \sum_{\mu < \nu} \hat{p}_{\mu}^2 \hat{p}_{\nu}^2$
Staggered $C = \sum_{\mu} \sin^2 k_{\mu} + m^2 = \sum_{\mu} \hat{k}^2 - \frac{a^2}{4} \sum_{\mu} \hat{k}^4 + m^2$

My personal wishlist III construct a "Reisz theorem" for staggered fermions

Inconsistencies?

S. Aoki, hep-lat/0011074, Lattice2000 review

PKS: plaquette action, staggered fermions

- PW: plaquette action, Wilson fermions
- RC(TP): RG gauge action, tadpole improved Wilson

 \rightarrow different continuum results even at large masses!

The continuum extrapolation

S. Aoki, hep-lat/0011074, Lattice review

 $m_\pi/m_
ho = 0.5$

Large lattice artefacts/alternative fits?

K.J. and J. Zanotti *fit may not not be the final one, but it is a possibility*

My personal wishlist IV

precise scaling analysis for various fermion actions in the quenched approximation

A scaling plot

(talks by A. & P. Hasenfratz for scaling tests of Hyp, Asqtad, CI and TP)

Problems in practical dynamical simulations: Gauge actions

I: RG action \rightarrow not reflection positive \Rightarrow complex energies

Necco, Sommer

free field analysis: $t \gg t_{\min} = \begin{cases} 0.5 & \text{Symanzik} \\ 0.9 & \text{Iwasaki} \\ 1.7 & \text{DBW2} \end{cases}$

 \Rightarrow two action method?

III: difficulty of sampling topological charge sectors

Problems in practical dynamical simulations: Wilson

Simulations with $N_f = 3$ improved fermions CP-PACS

RG improved action

Wilson gauge

Simulations with $N_f = 2$ Wilson gauge non-perturbatively improved fermions (K.J.)

• hysteresis effect

- effects almost independent from values $1 < c_{\rm sw} < 2$
- small lattice simulations

(unexpected) large lattice artefacts in quark mass

Wilson gauge, non-perturbatively improved Wilson fermions

Non-perturbatively improved Wilson

 $m(\infty) = m(16)$, W-W: Wilson action

R. Sommer

Problems in practical dynamical simulations: Staggered

Eigenvalue distribution of staggered operator in comparison to Random matrix theory

Farchioni, Hip, Lang see also: Damgaard, Heller, Niclasen, Rummukainen, Berg, Markum, Pullirsch, Wettig does problem disapear for $a \ll 1$? How do improved actions behave?

Results (nevertheless) Wilson

- comparison to chiral perturbation theory
- finite size effects
- status of running quark mass
- towards $N_f = 3$
- meson spectrum

Chiral Perturbation theory

two strategies:

- 1.) extrapolate to continuum limit and fit then to predictions of χPT advantages/disadvantages
- chiral invariance ensured
- direct comparison possible
- computationally demanding

in practise (χ PT practitioners): lattice data at non-vanishing lattice spacing are compared to continuum formulae

lattice data from chirally non-invariant lattice formulations

- 4-loop results (quadratic in quark mass) keeping consistently chiral symmetry
- parameters of chiral lagrangian *fixed* at physical point
- "improvement term" added but only one!!
- data (CP-PACS) at smallest values of a availabe: close enough to the continuum? (see later)

size of 4-loop corrections

Leinweber, Thomas, Young ("pion cloud")

BHM: We stress again that applying the expressions to pion masses above 600 MeV is only done for illustrative purposes, for a realistic chiral extrapolation smaller pion masses are mandatory

- it is possible to model lattice data
- clearly want, however, pure chiral perturbation theory

Chiral Perturbation theory

2.) take discretization effects into account Sharpe

Wilson fermions Baer, Rupak, Shoresh; Aoki

- \Rightarrow duplication of low energy constants
- \rightarrow physical LEC $l_4, \cdots, l_8 \leftrightarrow w_4, \cdots, w_8$

Staggered fermions Aubin, Bernard, Goltermann, Lee, Sharpe $+ \cdots$

start with Lee-Sharpe lagrangian

$$L = \frac{f^2}{8} \operatorname{tr}(\partial_{\mu} \Sigma \partial_{\mu} \Sigma^{\dagger}) - \frac{1}{4} \mu m f^2 \operatorname{tr}(\Sigma + \Sigma^{\dagger}) + \frac{2m_0^2}{3} (\Phi_I)^2 + a^2 V$$

 $\Sigma = \exp(i\phi/f), \ , \ \phi = \sum_{a}^{16} \phi_a T_a$

 Φ_I singlet field

V staggered flavor breaking potoential \rightarrow six terms with coefficients C_1, \dots, C_6

Chiral Perturbation theory

advantages/disadvantages

- lattice discretization effects can be (partly) absorbed
- allows for hybrid simulations such as improved fermions dynamical, overlap quenched
- (many) new parameters
- dependence of new fit parameters on g_0

Valence quark mass dependence of RfVV

 M_π^2/m_q (Aoki)

double ratio (Farchioni,Gebert, Montvay,Scholz,Scorzato) $Rf_{VV} = \frac{M_{\pi}^2(\text{sea})/m_q(\text{sea})}{M_{\pi}^2(\text{valence})/m_q(\text{valence})}$

 \rightarrow amazing cut-off cancelations in double ratios a = 0.28 fm (!)

Chiral Perturbation theory

remarks: it would be important to disentangle

- sea quark effects: plot only sea quark dependence
- *a* effects: de-double double ratios

a problem for universal LEC: assume

Aoki: shifting $\beta = 2.1 \rightarrow \beta = 2.2$, $\Lambda = 0.694(20) \rightarrow \Lambda = 0.128(88)$

DESY group: different definitions of lattice spacing a: $\Lambda_3/f_0 = 30.4(2.9)$ or $\Lambda_3/f_0 = 6.51(57)$

results are a warning that more studies are needed

Chiral Perturbation theory

A staggered example (thanks to C. Bernard)

 f_K ; taste viols; $N_f = 2+1$, finite V effects removed

 f_{π}, f_{K} agree with experiment

combinaton of GL coefficients seem to rule out $m_u = 0$ scenario

Two notes:

First: taking $\sqrt{\det}$ amounts in S χ PT to a partially quenched situation with 2 quenched fermions Bernard, Golternman

 $\det^{1/4}$ with u,d,s quarks means in 1-loop of S χ PT

• do S χ PT with $N_f = 4$ flavours; correct by hand: multiply loops by 1/4

generalizable to all orders of S χ PT? Bernard

- replica trick: computation with arbitary N_u , N_d , N_s of u,d,s quarks
- correct/tune by hand: set $N_u = N_d = N_s = 1/4$

Second: nice example of application of χ PT (Chandrasekharan, Jiang) \rightarrow very precise computation of condensate and susceptibility using meron cluster alorithm in strong coupling limit

> My personal wishlist V Need to discuss all these issues of chiral perturbation theory \rightarrow workshop

Finite size effects

generally $M(L) - M = -\frac{3}{16\pi^2 ML} \int_{-\infty}^{\infty} F(iy) e^{\sqrt{M_{\pi}^2 + y^2}L}$

 $F: \pi - \pi$ forward scattering amplitude in infinite volume Lüscher's formula $L^{-3/2}e^{-m_{\pi}L}$: leading order of F

corrections: Colangelo, Dürr, Sommer

$$\frac{1}{2}L^{-3/2}e^{-m_{\pi}L} + \frac{1}{\sqrt{2}L^{-3/2}}e^{-\sqrt{2}m_{\pi}L} + \frac{1}{\sqrt{3}L^{-3/2}}e^{-\sqrt{3}m_{\pi}L}$$

find (found) in practise $M = m_{\infty} + c/L^3$ (Fukugita, Mino, Okawa, Parisi, Ukawa)

Lippert, Orth, Schilling

 \rightarrow claim: find expected exponential finite size effects coeff. of exp. fitted

Finite size effects from chiral perturbation theory

chiral perturbation theory result: $\delta = \frac{3g_A^2 m_\pi^2}{16\pi^2 F^2} \int dx \sum_n K_0 (Ln \sqrt{m_{N_0}^2 x^2 + m_\pi^2 (1-x)})$

 m_{N_0} Nucleon mass in chiral limit

no free parameter! Leading order agrees with Lüscher formula

Running quark mass: status

• \rightarrow averagered over $L = 8 \rightarrow L = 16$ and $L = 12 \rightarrow L = 24$

- perturbation theory works well (unfortunately !?)
- point for smallest μ/Λ corresponds to large value of coupling $(L = \max)$
- scale still missing

Towards $N_f = 3$ dynamical Wilson simulations

- \rightarrow joint japaneses forces of CP-PACS and JLQCD collaborations
- \rightarrow RG improved gauge and O(a) improved Wilson fermion action \Leftarrow phase transition
- \rightarrow determination of $c_{\rm sw}$ non-perturbatively

 \rightarrow Schrödinger functional

 \rightarrow re-assuring: dynamical results can eliminate systematic uncertainty

My personal wishlist VII Add improved staggered results

What was left out, with all my apologies

- domainwall fermions RBC
- localization in QCD Golterman, Shamir
- structure functions MIT, SESAM, QCDSF
- topological susceptibility Hart et.al.
- η' from low-lying eigenmodes SESAM, MIT

Conclusion

New powerful computers (apeNEXT, QCDOC, PC cluster, comm. supercomputers)

- ★ allow transition to serious dynamical fermion simulations
- they are expensive machines that should be used wisely
 - \rightarrow check that your lattice formulation of continuum theory is okay
 - \rightarrow support and participate in ILDG to share configurations/propagators
 - \rightarrow $\,$ work hard on algorithmic improvements

what do we answer somebody coming with a really big machine and asks

- what action to choose
- what algorithm to employ

Conclusion

there are dangerous animals on the lattice that lurk in the dark ← found surprises in dynamical simulations

 \Rightarrow try to use always <u>two</u> actions, depending on your question

baryon spectrum, decay constants etc. (heavier quarks): improved staggred ↔ improved Wilson with (carefully selected) gauge action

very light quarks: chirally improved actions (truncated fixed point, domain wall with $L_s \ll 1$, hypercude,FLIC) \leftrightarrow actions with exact chiral symmetry (overlap, domain wall with $L_s \gg 1$)