Weak Matrix Elements from Lattice QCD

"Lattice 2003", July 15-19 2003, Tsukuba, Japan.

Damir Bećirević

Laboratoire de Physique Théorique Universite´ Paris Sud, Centre d'Orsay F-91405 Orsay-Cedex, France

Outline

- Simplest weak matrix element: $K_{\ell 3}$ decay
- \blacksquare K^0-K K^0 : lattice estimate of B ˆ B_K [update]
- \blacksquare Getting to grips with ε'/ε
- \blacksquare New results for EW penguin $(K\to\pi\pi)$ and QCD penguin (via $K \to \pi$)
- **Assorted topics**

I apologise to everyone whose work is not cited properly.

Simplest weak matrix element

Decay constant and weak decay form factors

- **Recent interest in** $K \to \pi \ell \nu$:
	- \blacklozenge direct extraction from $K_{\ell3} \to |V_{us}| = 0.2201(24)$
	- \blacklozenge indirectly, i.e. from the CKM unitarity $\rightarrow |V_{us}| = 0.2269(21)$
	- \blacklozenge which error is underestimated? Examine $K_{\ell3}$
	- **ChPT calculation to NNLO completed (Bijnens, Talavera,**
		- \rightarrow key observation : $\mathcal{O}(p^6)$ LEC's can be related to the scalar form factor
	- **Precision calculation of the scalar form factor on the lattice is possible**
		- \rightarrow follow the strategy used in $B\to D\ell\nu$ (Hashimoto et al,

Exploratory study by SPQcdR

$K_{\ell 3}$ decay

$$
\langle \pi^{-}(p') | \bar{u} \gamma_{\mu} s | K^{0}(p) \rangle = \left(p + p' - q_{\mu} \frac{M_{K}^{2} - M_{\pi}^{2}}{q^{2}} \right) f^{+}(q^{2}) + q_{\mu} \frac{M_{K}^{2} - M_{\pi}^{2}}{q^{2}} f^{0}(q^{2})
$$

 $\mathsf{Use}\; f^0(0)=f^+(0)\equiv f(0)\oplus$ Ademollo-Gatto theorem With improved Wilson quarks

$$
R(q^2, M_K^2, M_\pi^2) = \frac{\langle \pi | V_\mu^{us} | K \rangle \langle K | V_\mu^{su} | \pi \rangle}{\langle \pi | V_\mu^{uu} | \pi \rangle \langle K | V_\mu^{ss} | K \rangle} \propto f^{0/4}(q^2, M_K^2, M_\pi^2) + \mathcal{O}(a^2)
$$

$$
f^0(q^2, M_K^2, M_\pi^2) = \underbrace{f^0(0, M_K^2, M_\pi^2)}_{1 - \rho(M_K^2 - M_\pi^2)^2} (1 - q^2 / M_{Vus}^2)
$$

K`³ **decay - cont.**

Exploratory (quenched) study by SPQcdR underway. Unquenching SHOULD be done too!

Statistics poor : errors small \rightarrow worth pursuing!

Weak Matrix Elements. . ."Lattice 2003" – p.5/38

K_{23} **decay - cont.**

Info on the mass dependence of $f(0) \stackrel{?}{\rightarrow}$ solution to the " $|V_{us}|$ problem"

Large statistics is necessary: doable with currently available hardware!

K^0-K ⁰ **mixing - recall**

 $(K^0, \overline{K}^0) \neq (K_L, K_S) \Rightarrow$ the system oscillates. Parameter measuring the indirect \overline{CP} violation

$$
\varepsilon_K = \frac{\mathcal{A}(K_L \to (\pi \pi)_{I=0})}{\mathcal{A}(K_S \to (\pi \pi)_{I=0})} \simeq \frac{e^{i\pi/4}}{\sqrt{2}\Delta M_K} \text{Im}\left\{\frac{1}{2m_K} \langle \overline{K}^0 | \mathcal{H}_{\text{eff}}^{\Delta S=2} | K^0 \rangle \right\}
$$

Experimentally (PDG)

$$
\Delta M_K = (3.491 \pm 0.009)
$$

$$
\times 10^{-15} \text{ GeV}
$$

$$
\varepsilon_K^{\text{exp.}} = (2.280 \pm 0.013) \times 10^{-3} e^{i\pi/4}
$$

K^0-K ⁰ **mixing - setup**

 $\blacksquare\; C(\mu)$ info on SD dynamics: perturbation theory (A. Buras et al. 1995) **lacks** low energy QCD dynamics

$$
\langle \bar{K}^0|Q(\mu)|K^0\rangle = \frac{8}{3}f_K^2m_K^2B_K(\mu)
$$

AD to 2-loops in MS and RI/MOM (Altarelli et al. 1981, Buras et al. 1990) \overline{MS} , (Ciuchini et al. 1997, Buras et al. 2000) $_{\rm RI/MOM}$

Weak Matrix Elements. . ."Lattice 2003" – p.8/38

 $O_1(\mu)$

K^0-K ⁰ **in the UTA**

ને Hyperbola: $|\varepsilon_K| = C\ \hat{B}$ $\bar{B}_K \, A^2 \lambda^6 \, \bar{\eta} \, [A^2 \lambda^4 \, (1-\bar{\rho}) \,\, F_{tt} + F_{tc}]$

• Combined with $\sin 2\beta$ (direct CP-violation in $B \to J/\psi K_S$): two solutions for the vertex of the UTA (*marked area –* B *-physics constraints*) \clubsuit Crucial input \hat{B} $B_K:$ dominant uncertainty in UTA! \qquad Weak Matrix Elements…"Lattice 2003" – p.9/38

B_K and lattices

- \diamond The only method allowing to compute the matrix elements of 4 -f operators from the first principles of QCD : capture the low energy QCD physics, AND unambiguous matching with the continuum renormalisation scheme at high energy scale μ
- \diamond Benchmark calculation of the 4-f operators on the lattice. Challenging issues: matching and renormalisation, chirality, quenching
- \diamond HEP community is urging the lattice community to reduce the errors; Lattice community is not converging to ^a consensus. Several recent calculations require ^a critical overview. Here is my take!

B_K with staggered quarks

:-) $U(1)_A$ symmetry protects B_K (and m_q) from additive renormalisation, i.e. B_K has a good chiral behavior

$$
\langle \bar{K}^0|O_1(\mu)|K^0\rangle\big|_{\vec{p}_K=0} = \alpha M_K^2 + \beta M_K^4 + \dots
$$

"Staggered flavor" symmetry is broken: non perturbative renormalisation (NPR) unfeasible $[(16\times16)^2$ lattice operators to match onto 9 in continuum!] $\;\Rightarrow$ 1-loop perturbation theory : "wrong tasting" operators give 'large' contributions. As a result, scaling violation pronounced.

Extensive study by JLQCD (Aoki et al, 1998); Impressive lattices up to $56^3 \times 96$ @ $\beta = 6.65^{WP}$! $B_K^{\overline{\rm MS}}({\rm 2GeV})=0.63(4)$ ${\sf Set\text{-}I}: B^{\rm MS}_K(\rm 2GeV)= 0.67(6)$ ${\sf Set\text{-}II}: B^{\rm MS}_K({\rm 2GeV})_{\rm inv}=0.71(7)$

Weak Matrix Elements. . ."Lattice 2003" – p.11/38

$New: B_K$ with staggered quarks (W.Lee et al)

Taste symmetry breaking in the renormalisation gets largely suppressed by fattening the link variable (Lee, Sharpe, 2003). The ${\sf most}$ efficient is the HYP link fattening (cf. A.Hasenfratz,

 $\star \,$ at $\beta = 6.0$ and $16^3 \times 64$ and fitting to $B_K = c_0(1+c_1M_K^2\log(M_K^2)) + c_2M_K^2,$ they get

$$
B_K^{\rm MS}(2{\rm GeV}) = 0.59(2)
$$

- $\star\,$ N.B. With similar lattice setup JLQCD had $B_K^{\rm MS}({\rm 2GeV})=0.68(1)$ (cf. prev.transp.)
- \star Does the HYP-ening improve the scaling behavior? Such ^a study is needed.

Weak Matrix Elements. . ."Lattice 2003" – p.12/38

B_K with Wilson quark action

Wilson term explicitely breaks chiral symmetry: CP⊗S $(s \leftrightarrow d)$ symmetry, but no chirality \rightarrow additive renormalisation. Mixing with 4 other parity even operators

 $O_{_1} = V \times V + A \times A$ $O_{_2} = V \times V - A \times A$ $O_{_3} = S \times S - P \times P$ $O_{_4} = S \times S ~+~ P \times P$ $O_{_5}=T\times T$

$$
O_1(\mu) = Z_1(a\mu) \left\{ O_1(a) + \sum_{k=2}^5 \Delta_k(a) O_k(a) \right\} \qquad (\partial \Delta / \partial \mu = 0)
$$

Sandwich this formula by kaons : $\langle\bar{K}\rangle$ $^0|O_{_{k}}|K^0\rangle\equiv\langle O_{_{k}}(a)\rangle$

$$
\langle O_1(\mu) \rangle = Z_1(a\mu) \langle O_1(a) \rangle \left[1 + \sum_{k=2}^5 \Delta_k(a) \overline{\langle O_k(a) \rangle / \langle O_1(a) \rangle} \right]
$$

$$
1 - \frac{6\Delta_2 - \Delta_3 - \Delta_5}{8} - \frac{4\Delta_2 - 6\Delta_3 + 5\Delta_4 - 8\Delta_5}{8} \left(\frac{M_K}{m_d(a) + m_s(a)} \right)^2
$$

lim $\lim_{m_q\to 0} (M_P/m_q)^2 \simeq 1/m_q \to \infty \Rightarrow$ smallness of Δ_i is irrelevant when close to $m_q \to 0!$ Weak Matrix Elements. . ."Lattice 2003" – p.13/38

B_K Wilson - without subtraction

- Non-perturbative method to determine Δ_i and $Z_1(a\mu)$ devised in (Donini et al,1999): RI/MOM(Landau) scheme.
- Better avenue: get rid of subtractions (DB et al, 2000). Recall that the spurious mixing in PV sector does not occur due to S-symmetry (Bernard, 1989)
- Ward Identity on the m.e.of the PV operator leads to the m.e. of the PC one. Rotation around the 3^{rd} axis in the isospace:

$$
\delta u = \gamma_5 u \qquad \delta d = -\gamma_5 d
$$

$$
\delta \bar{u} = \bar{u}\gamma_5 \qquad \delta \bar{d} = -\bar{d}\gamma_5 \qquad (m_u = m_d \equiv m)
$$

$$
2m\langle \sum_{\vec{x},\vec{y},\vec{z},t_z} \Pi(\vec{z},t_z) P(\vec{x},t_x) O_{VA+AV}(0) P(\vec{y},t_y) \rangle = 2\langle \sum_{\vec{x},\vec{y}} P(\vec{x},t_x) O_{VV+AA}(0) P(\vec{y},t_y) \rangle
$$

+ correlators with chirally rotated sources, but they vanish by C -symmetry.

• SPQcdR checked in numerical data the consistency of $\langle O_{_1} \rangle \equiv \langle O_{VA+AV} \rangle$, as obtained by methods with and without subtractions (method with subtr. supplied by Δ_i 's fixed NP'ly)!(DB et al,2001 and 2002)

B_K Wilson - how to extract it?

• Strategy-I: Valid when chirality is guaranteed (staggered use this). With Wilson, even with tricks to get rid of subtractions, chirality is still missing ($\mathcal{O}(a)$ effects present!), and we have

$$
\frac{\langle \sum_{\vec{x},\vec{y}} P(\vec{x},t_x) O_1(0) P(\vec{y},t_y) \rangle}{(8/3) \langle \sum_{\vec{x}} P(\vec{x},t_x) A_0(0) \rangle \langle \sum_{\vec{y}} A_0(0) P(\vec{y},t_y) \rangle} \rightarrow \frac{\langle \bar{K}^0 | O_1 | K^0 \rangle}{(8/3) |\langle 0 | A_0 | K^0 \rangle|^2} = \frac{\langle \bar{K}^0 | O_1 | K^0 \rangle + \mathcal{O}(a)}{(8/3) f_K^2 M_K^2}
$$

$$
= B_K + \mathcal{O}(a/M_K^2)
$$

Devilish game! Without the manifest chiral symmetry, results acceptable IFF $M_K^2\sim m_q$ are large "enough" and by taking $a\to 0.$ N.B. that NOTHING can be said about the change of B_K when approaching the chiral limit!

• Strategy-II: Safe road if assuming exact $SU(3)$ (Gavela et al, 1988), and

$$
\frac{C_{PO_1P}^{(3)}(x,0,y)}{C_{PP}^{(2)}(x,0)C_{PP}^{(2)}(0,y)} \rightarrow \frac{\langle \bar{K}^0|O_1|K^0\rangle}{|\langle 0|P|K^0\rangle|^2} \stackrel{fit}{=} \alpha + B_K \frac{8}{3} \frac{|\langle 0|A_0|K^0\rangle|^2}{|\langle 0|P|K^0\rangle|^2}
$$

This strategy can rescue the current extractions of B_K from DWF action, in which the subtractions of $d=6$ operators were so far ignored (*Will get back to that later!*)
Weak Matrix Elements. . . "Lattice 2003" – p.15/38

B_K Wilson - result

SPQcdR : without subtractions, high statistics at β^{WP} $=$ $\,6.0,\, \,$ $6.2\,$ and 6.4, NPR! Conversion to $\overline{\text{MS}}$ at in perturbation theory gives $B_K^{\overline{\rm MS}}({\rm 2GeV})=0.64(8)$ \star I don't see this result improving soon \star Consistent with SPQcdR and JLQCD estimates **with** subtraction followed by

• Alternative way of getting the Wilson B_K without subtractions : use tmQCD. (cf.

B_K with tmQCD

 $S = \sum \left[\bar{\psi}(x) \left(\not{D} + m_q + i \mu_q \gamma_5 \tau_3 \right) \psi(x) + \bar{s} \left(\not{D} + m_s \right) s \right], \qquad \quad \psi = (u \ d)^T \qquad m_u = m_d \equiv m_q$ $x \$ |
|
|

is invariant under: $\psi \rightarrow \exp(i\alpha \gamma_5 \tau_3/2) \psi$, $\bar{\psi}$ $\bar{\psi} \rightarrow \bar{\psi}$ $\exp(i\alpha\gamma_5\tau_3/2)$ for $\tan\alpha=\mu_q/m_q$ • Axial rotation of O_{VV+AA} leads to

 $\langle \bar{K}^0|O_{VA+AV}|K^0\rangle_{\rm tmQCD}^{\alpha=\pi/2}=i\langle \bar{K}^0|O_{VV+AA}|K^0\rangle_{\rm tmQCD}^{\alpha=0}\equiv i\langle \bar{K}^0|O_{1}|K^0\rangle_{\rm QCD}$

• Important advantage of tmQCD : no exceptional configurations \Rightarrow getting closer to the chiral limit.

• Last year NPR implemented in the Schrödinger functional scheme (Guagnelli et <code>al, 2002</code>). NLO anomalous dimension of O_{\rm_1} in that scheme is missing.

$New: B_K$ with **tmQCD** by Dimopoulos et al. – Alpha

A PRELIMINARY result at $\beta^{WP}=6.0$, on $16^3\times 48$ lattice (cca 200 configs). Strategy-I employed to extract B_K , but they work with $m_P > 600$ MeV. Strategy-II pushes B_K upwards(!)

B_K with DWF (RBC)

DWF action satisfies the Ginsparg–Wilson relation $\{D^{-1},\gamma_5\}=\gamma_5$ \Rightarrow chiral symmetry guaranteed at finite lattice spacing.

In practice, chiral symmetry not exact : residual mass term in AWI. Coarse lattices $m_{5q}\not\to 0$, even with $N_5\to\infty.$ On finer lattices ($1/a\sim 2$ GeV), and with WP gauge action, not clear if $\lim_{N_5\to\infty}m_{5q}=0$. Improved gauge action (IW) reduce m_{5q} by an order of magnitude (Aoki et al, 2001)

 \clubsuit RBC (WP-action), $16^3 \times 32 \times 16$, 400 configs, (Blum et al, 2001) NPR in the RI/MOM scheme; by using Strategy-I, they get $\frac{B_{K}^{\rm MS}({\rm 2GeV}) = 0.532(11)}{}$

NEW result this year (see J.Noaki's talk), from 77 configs at $\beta^{DBW2} = 1.22$ $(1/a = 2.9(1)$ GeV), their PRELIMINARY value is

 $B_K^{\rm MS}(2{\rm GeV})=0.552(11)$

Subtractions ignored! Strategy-I may lead to a wrong B_K (b/c of mixing with operators that scale like $1/m_{q}\!\left\langle \right.$

Weak Matrix Elements. . ."Lattice 2003" – p.19/38

B_K with DWF (CP-PACS)

ιβ CP-PACS, $β^{IW} = 2.6$ (1/a $\simeq 1.9$ GeV) and $β^{IW} = 2.9$ (1/a $\simeq 2.8$ GeV). several ${\sf lattices:}$ as ${\sf large~as}~32^3\times 60\times 16!$ (Ali Khan et al, 2001) Renormalisation perturbative (S.Aoki et al, 2001); by using Strategy-I, in $a\rightarrow 0,$ they quote $\frac{B_\mathrm{K}^\mathrm{MS}(\mathrm{2GeV}) = 0.575(6)(19)}{}$

 $\mathsf{HOWEVER}$ if the Strategy-II is adopted: at $1/a \sim 1.9$ GeV $B_K^{\rm MS}(2{\rm GeV})=0.737(6)$ and at $1/a \sim 2.8$ GeV $B_K^{\overline{\mathrm{MS}}}(\text{2GeV})=0.723(6).$ In $a \to 0$ this leads to $B_K^{\overline{\rm MS}}({\rm 2GeV})=0.696(7)(23)$

Thanks to Yusuke Taniguchi!

Weak Matrix Elements. . ."Lattice 2003" – p.20/38

B_K **with Overlap** beGrand et al. (MILC)

NEW: smaller quark masses than last year, 2 sets of data: [$\beta=5.9~(12^3\times36)$, 80 configs] and [$\beta=6.1$ ($16^3{\times}48$), $\bf{60}$ configs] WP + HYP link which kills lattice tadpoles \rightarrow better matching to continuum. Perturbative renormalisation (T.DeGrand, 2002)

B_K **with Overlap** Boston-Marseille

Last year preliminary \rightarrow this year definitive result from 80 configs at $\beta^{WP} = 6.0$ (16³ \times 32). <code>NPR</code> in the RI/MOM scheme. They obtain $B_K^{\overline{\rm MS}}({\rm 2GeV})=0.62(6)(1)^{-}$ (N.Garron et al,

1.2 $\mathbf{1}$ 0.8 $\mathbf{B}^{\mathrm{RGI}}_{\mathrm{K}}$ 0.6 0.4 0.2 $\overline{0}$ 0.2 $\overline{0}$ 0.4 0.6 M_{κ}^2 [GeV²]

Speculate that the perturbative coefficient of the chiral log term would reduce B_K to $B_{\rm v}^{\overline{\rm MS}}$ (2GeV) $\simeq 0.35$.

B_K conclusion

- \clubsuit Although with unpleasant scaling violations, staggered results for B_K are the most accurate $(a\to 0$ taken)
- \clubsuit Wilson fermions with methods that alleviate problems of mixing with $d = 6$ operators, agree well with staggered result. However, no info on B_K/B_{χ} ! ($a \to 0$ taken)
- ♣ DWF : Strategy-II should be used AT LEAST to assess the systematic uncertainty. In practice, the difference between the results from two strategies do not agree: (S-I) mixing gives rise to $1/m_q$ terms; (S-II) exact SU(3) is not verified esp. with smaller m_q .
- ♣ Overlap (Neuberger) fermions implemented. Results consistent with more elaborated approaches. Must explore finer lattices and larger volumes (still costly!)
- ♣ Unquenching is ^a major worry! Problems not indicated in (Q)ChPT [log term is the same (deg.case!)]. Sharpe's guesstimate of irreducible 15% of quenching error remains with us! Non-degeneracy vs. degeneracy is a tiny effect in full ChPT $\sim 2\%$
- ♣ Finally, $B_K^{\rm MS}(2\;{\rm GeV}) = 0.63(4)(\pm 15\%),$ i.e.

$$
\hat{B}_K = 0.87(6)(13)
$$

Direct CP-violation $\eta\neq 0$! NA48 and KTeV

$$
\varepsilon'/\varepsilon = (16.6 \pm 1.6) \times 10^{-4}
$$

♣ A nightmare for theory: all problems in calculation of the matrix elements appear there

After decomposing $K \to \pi\pi$ amplitudes into parts of definite isospin $(I = 0, 2)$

$$
\mathcal{A}(K^+ \to \pi^+ \pi^0) = \sqrt{3/2} A_2 e^{i\delta_2} \n\mathcal{A}(K^0 \to \pi^+ \pi^-) = \sqrt{2/3} A_0 e^{i\delta_0} + \sqrt{1/3} A_2 e^{i\delta_2} \n\mathcal{A}(K^0 \to \pi^0 \pi^0) = \sqrt{2/3} A_0 e^{i\delta_0} + \sqrt{4/3} A_2 e^{i\delta_2}
$$

one writes

$$
\epsilon' = \frac{ie^{i\pi/4}}{\sqrt{2}} \underbrace{\frac{\text{Re}A_2}{\text{Re}A_0}}_{\omega} \left(\frac{\text{Im}A_2}{\text{Re}A_2} - \frac{\text{Im}A_0}{\text{Re}A_0} \right)
$$

 \clubsuit (1/ω)^{exp} ≈ 22 – famous puzzle: large $\Delta I = 1/2$ w.r.t. $\Delta I = 3/2$. P^2 and P^0 both large, difference small.

^ε⁰/ε

 \clubsuit Again, one employs OPE: Short distance dynamics for these ($\Delta S = 1$) processes encoded in Wilson coefficients, all computed at NLO, 10 years ago by Rome and **Munich groups** (Ciuchini et al and Buras et al 1993) See recent paper by Buras and Jamin

♣ Relevant operators (out of 10) are: current-current

$$
Q_1 = (\bar{s}d)_{V-A} (\bar{u}u)_{V-A} \qquad Q_2 = (\bar{s}^a d^b)_{V-A} (\bar{u}^b u^a)_{V-A}
$$

QCD penguins

$$
Q_4 = (\bar{s}^a d^b)_{V-A} \sum_{q=u,d,s} (\bar{q}^b q^a)_{V-A} \qquad Q_6 = (\bar{s}^a d^b)_{V-A} \sum_{q=u,d,s} (\bar{q}^b q^a)_{V+A}
$$

Electroweak penguins

$$
Q_8 = (\bar{s}^a d^b)_{v-A} \sum_{q=u,d,s} (\bar{q}^b q^a)_{v+A} \qquad Q_9 = (\bar{s}d)_{v-A} \sum_{q=u,d,s} (\bar{q}q)_{v-A}
$$

Need to calculate $\langle (\pi \pi)_I | Q_i | K \rangle$

^ε⁰/ε **: matrix elements**

Matrix elements can be computed in 3 ways

 \circ INDIRECTLY : In the chiral limit, relate $K \to \pi\pi$ to $K \to \pi$ and $K \to 0$, which are simpler to compute (C.Bernard et al 1985) Chirality is crucial! Early calculations with staggered fermions (Kilcup, Pekurovsky,1999).

Heroic effort by CP-PACS and RBC collaborations with DWF (<code>RBC: Blum et al,</code>

hep-lat/0110075; CP-PACS: Ali Khan et al, hep-lat/0108013)

○ DIRECTLY but with UNPHYSICAL kinematics (to avoid Maiani-Testa theorem), and then extrapolate to the physical point by using ChPT. SPQcdR carries out such ^a project by using Wilson fermions

(Boucaud et al, 2001; D.B. et al, ²⁰⁰²)

 \circ \circ DIRECTLY in finite volume, by using the Lellouch–Lüscher formula. For a reasonable discretisation (a), huge lattice volumes are needed to have $L\approx 6$ fm (crucial condition for the applicability of the method).

$\Delta I =$ ¹/² **rule**

$$
(1/\omega)^{\exp} \approx 22 \qquad 1/\omega = \frac{\text{Re}A_0}{\text{Re}A_2} \qquad \{ \langle Q_1 \rangle, \langle Q_2 \rangle \} \in \text{Re}A_{0,2} \qquad \langle Q_6 \rangle \in \text{Re}A_0
$$

SD physics $(1/\omega)_{\rm SD}^{\rm NLO} \approx 2.$ The rest is non-perturbative. ITEP group first pointed out at Q_6 , which was/is expected to be the answer to the puzzle (Shifman et al, 1977). Computation of $\langle Q_6 \rangle$ very demanding!

♣ Lattice:

♣

 $\mathsf{RBC}: 1/\omega = 25.3 \pm 1.8 \pm \mathrm{syst.}$ CP-PACS : $1/\omega = 9.5 \left(^{+3.2}_{-1.8} \right) \pm \mathrm{syst.}$ Both see that $\langle Q_6 \rangle$ is very small, i.e. irrelevant for $\Delta I = 1/2$ rule. How do they see this enhancement of $1/\omega$? B_K^χ -again- is the answer!

▲ CP-PACS and RBC:

They agree on $\text{Re}A_0$, but not on $\text{Re}A_2$.

$$
\langle{\pi^+|Q_{1,2}^{3/2}|K^+}\rangle=\frac{9}{4}f_K^2m_K^2B_K^{\chi}
$$

$\Delta I =$ ¹/² **rule cont.**

Fit to a form ($\alpha \equiv B^\chi_K$)

$$
B_K = \alpha \left(1 + \beta M^2 + C \frac{M^2}{(4\pi f)^2} \log(M^2/\Lambda_\chi^2) \right)
$$

- **RBC-consistent with** $C^{\text{ChPT}} = -6$, CP-PACS not consistent
- RBC quote the result by fixing $C=-6$ in the fit, CP-PACS treats C as a free parameter. Thus the difference!

My previous comments on $B_K^{\rm DWF}$ obviously apply here too.

What about $\langle Q_6 \rangle$?

 \blacksquare $Q_i^{1/2}$ have "penguin" contractions: mixing with lower dimensional operators $Q_{sub} = (m_s + m_d)\bar{s}d + (m_s - m_d)\bar{s}\gamma_5d$, to be subtracted away! Use CPS and parity (chirality is ^a must!), and subtractions are made by imposing

 $\langle 0|Q_6 - \alpha_6 Q_{\rm sub}|K \rangle = 0$

Likewise for other $\Delta I = 1/2$ operators. Q_6 nightmareish : subtraction almost completely washes out the signal.

■ In full theory $Q_6\in (8_L,1_R)$ irrep of $SU(3)_L\otimes SU(3)_R.$ In quenched theory, $SU(3) \rightarrow SU(3|3)$, Q_6 is not a singlet under $SU(3|3)_R \Rightarrow Q_6^{\rm full} \neq Q_6^{\rm quench}$

If simply transcribed from full to quenched QCD $(\psi=(q,\tilde q)^T,\,N=([{\bf 1}_{\rm diag}]\oplus[-{\bf 1}_{\rm diag}])$:

$$
Q_6=\frac{1}{2}Q_6^S+Q_6^{NS}\;:\quad Q_6^S=(\bar{s}^ad^b)_{_{V-A}}\sum_q(\bar{\psi}^b\psi^a)_{_{V+A}}\qquad Q_6^{NS}=(\bar{s}^ad^b)_{_{V-A}}\sum_q(\bar{\psi}^b N\psi^a)_{_{V+A}}
$$

A serious problem for all quenched estimates of $\langle Q_6\rangle!$

Weak Matrix Elements. . ."Lattice 2003" – p.29/38

NEW: B_6 **staggered**

 \blacksquare A way out proposed by Golterman & Pallante: kick out Q_6^{NS} . It reduces to omitting the $\bar{q}q$ contractions in "eye" and annihilation diagrams. However, there is no unique way to get rid of $Q_6^{NS}.$ Golterman & Peris argued that anyway $\alpha^Q_{1\ (8,1)}/\alpha_{1\ (8,1)} < 1$: i.e. Quenched $\langle Q_6\rangle$ smaller than the full one!

Bhattacharya et al: with HYP-staggered; subtraction is made à la Bernard et al.; same lattice setup as discussed for B_K (see also talk by W.Lee)

NEW: B⁶ **staggered**

They compute B_6 **parameter**

$$
\langle (\pi \pi)_{I=0} | Q_6(\mu) | K \rangle^{(0)} = -4 \sqrt{\frac{3}{2}} (f_K - f_\pi) \left(\frac{M_K^2}{m_s(\mu) + m_d(\mu)} \right)^2 B_6(\mu)
$$

 \clubsuit Result in the $\overline{\text{MS}}$ (NDR) of Buras et al is

 $B_6^{\rm stand.}(m_c) = 0.73(9) \qquad B_6^{\rm GP}(m_c) = 0.98(7)$

the value used in the standard $\varepsilon^{\prime}/\varepsilon$ analyses for ages.

 \star \star Their <u>"standard"</u> value is more than 2 times larger than CP-PACS $B_6(m_c) \approx 0.3$ (similar situation with RBC – their B_6 even smaller) \longrightarrow $\langle Q_6 \rangle$ is still controversial!

Plugging the $B_6^{\rm GP}$ and $B_8^{3/2}=1.0(2)^{\rm NEW}$, in the Buras & Jamin (BJ) formula, they get $\varepsilon'/\varepsilon = (10.9 \pm 1.5) \times 10^{-4}$

2 comments:

 (1) $P⁰$ part of the BJ formula contains the isospin breaking term whose value is also controversial: $\Omega_{IB} \,=\, 0.15 \,\div\, 0.20$, confirmed recently by Cirigliano et al. On the other side, S.Gardner suggests $\Omega_{IB} \in (0.05,0.78)$. Be very affraid!

 (2) Would be interesting if W.Lee et al. computed $\langle Q_2 \rangle$, to see if they agree with findings from DWF.

Weak Matrix Elements. . ."Lattice 2003" – p.31/38

$K\to\pi\pi$ **from** $K\to\pi$, $K\to 0$ (remarks)

Problem of subtractions may be tackled by using tmQCD. By a judicous choice of 2 twisting angles (dynamical charm!), in the quenched approximation, it is possible to eliminate the power divergence problem altogether (see S.Sint's talk)

- How to reach the chiral limit with $K\to\pi$ and $K\rightarrow 0$ is a difficult problem.
- \blacksquare with RBC results, D.Lin shows that hitting the chiral limit is ambiguous (vertical line, "arbitrary" point at which the polynomial and log-dominated behavior match)
- **FSI** ignored
- $\blacksquare\ \mu=m_c$ is very low for OPE to set in; With dynamical charm, GIM efficient for Re A_0 (but not for $\text{Im}A_0$)
- Unquenching tackled this year for the 1st time: First results from the unquenched study by RBC (see talk by R.Mawhinney).

Weak Matrix Elements. . ."Lattice 2003" – p.32/38

$NEW: \Delta I = 3/2$ by **SPQcdR**

Direct computation of $\langle \pi\pi |Q_{7,8}^{3/2} |K\rangle$, but with SPQR kinematics: K and one π in the final state are at rest; the other pion moves $(\vec{p}_{\pi}=0, 2\pi/L)$, considered). When $\vec{p}_{\pi}\neq 0$, to have $|(\pi\pi)_{I=2}\rangle$ state important to symmetrise as $[(|\pi^+(\vec{p})\pi^0(\vec{0})\rangle + |\pi^+(\vec{0})\pi^0(\vec{p})\rangle]/2$, to remove $I = 1$ component.

 \spadesuit Quenched study at $\beta^{WP}=6.0$ (24³ \times 64), 480 configs with Wilson quarks. Matching and renormalisation done nonperturbatively (in RI/MOM).

 \spadesuit Extracted amplitudes are functions of $M_K,$ M_π and E_π . (Q)ChPT expressions worked out at NLO by

 \spadesuit QChPT expression : no suitable description of the data points (simulated pions $M_\pi > 500$ MeV).

$NEW: \Delta I = 3/2$ by **SPQcdR** cont.

- \bigstar To go to the physical limit they fit the data to the polynomial form in general kinematics, match to the SPQR kinematics enriched by the (full-physical) chiral logs at some m_M . That fix all the low energy constants, after which they extrapolate to the physical pion and kaon masses.
- \star The point at which the smooth matching is made (from which the chiral log behavior becomes important in extrapolation) is varied between $0.3\text{-}0.5$ GeV, and th spread is included in the syst.error.

RESULT in
$$
\overline{\text{MS}}(\text{NDR})
$$
 at $\mu = 2 \text{ GeV}$:
\n
$$
\langle \pi \pi | Q_8^{3/2} | K \rangle = 0.664(57) \frac{40}{38} \left(\frac{50}{40} \right)
$$
\nAs a byproduct they also compute
\n
$$
\langle \pi \pi | Q_7^{3/2} | K \rangle = 0.111(10) \left(\frac{6}{4} \right) (6)
$$

(see poster by M.Papinutto) N.B. The errors due to the $\pi\pi$ -phase shift and the finite volume effects are not included in the final systematics (*i. Lellouch*– Lüscher factor applies to the center of mass frame of 2 pions; ii. QChPT formula does not fit the data, so its finite volume version cannot be used).

Weak Matrix Elements. . ."Lattice 2003" – p.34/38

$\bm{\mathrm{Direct}}$ **calculation of** $\Delta I = 1/2$ <code>amplitudes?</code>

• Lin, Martinelli, Pallante, Sachrajda, Villadoro, 2003: Lack of unitarity in the (partially) quenched theory induces several horrendous problems to SPQcdR:

(i) no Watson theorem \rightarrow FSI phase is not universal (depends on the operator used to create two pion state);

- (ii) no unambiguous way to form the time independent ratios of correlation functions in order to extract the desired amplitudes from the lattice (η' propagates with other PGB – it does not decouple from the octet) (iii) Amplitudes increase with the size of the lattice volume (see also Golterman,Pallante,2000)
- (iv) Lüscher's quantisation condition and LL formula are not valid any more

• Laiho, Soni, 2003:

PQCD may be good enough for $K \to 0$, $K \to \pi$ and $K \to \pi(\vec{0})\pi(\vec{0})$. A specially good is the situation in which $m_{\text{sea}} = m_{\text{val}} = m_u = m_d$, in which the finite volume enhancement dissapears (see J.Laiho's talk)

Many other issues that I cannot cover today...

• Young Ross:

Adelaide group computed μ_p and $\mu_{\Delta^+}.$ They observe a strong nonlinearity that is very well fit by the expressions derived in QChPT. (Unambiguous evidence for the quenched chiral log?)

• A.Schindler & I.Wertzorke:

NPR twist-2 $\langle x \rangle_\pi$, strong dependence on the lattice volume is getting under control. First physical result? (see their talks)

```
• Y.Aoki (RBC):
```
Hadronic matrix element of proton decay: feasibility study with DWF

```
• T.Yamazaki (JLQCD), K.J.Juge (GRB), C.Kim (RBC) :
\pi-\pi\text{: }a_0^2 and \delta_2(W)
```
• G.C.Rossi:

In what way their proposal to use $S_W(+r)$ and $S_W(-r)$ to reduce all $\mathcal{O}(a)$ effects, may be useful in kaon physics?

• Y.Aoki (RBC):

Hadronic matrix element of proton decay: feasibility study with DWF

Questions, requests, comments . . .

 \bigstar $_{B_K}$

UNQUENCH, UNQUENCH, UNQUENCH . . .

World average remains:

B ˆ $B_K = 0.87(6)(13)$

second error is due to quenching (this afternoon RBC presents B^{DWF}_{K} with $n_F=2$). UNQUENCH, UNQUENCH, UNQUENCH . . .

♦ Props to RBC and CP-PACS for a huge effort with DWF Important: NLO chiral corrections must be implemented. What would they obtain if implemented the GP proposal? Overlap fermions have not been explored yet.

 \clubsuit To get to the physical $K \to \pi\pi$, Avenue-1: ChPT. There exists Avenue-2 too: dispersion relations (Bourrely, Caprini, Micu, 2002; Bücher et al 2001) with bouble diagrams resummed à la Omnès (subtraction constants can be fixed from the matrix elements already computed on the lattice!)

Questions, requests, . . .

 $\,\,\hat\triangleright\,\, \varepsilon'/\varepsilon$:

Do the collaborations using staggered fermions see large $\langle Q_{2}\rangle$ (i.e. large to get $1/\omega$ right)?

More studies of $\langle Q_4 \rangle$ are needed: if $\langle Q_6 \rangle$ is indeed small (quenching is a scare!), then probably Buras& Jamin should include explicitely $\langle Q_4 \rangle$ in their formula.

• "Directly" obtained value for the EW penguin in quenched approximation (SPQcdR) is by ^a factor 2-4 smaller than the predicitions based on analytic (phenomenological) approaches by Bijnens et al, Donoghue et al, DeRafael et al. Why? Community is strongly encouraged to implement LL proposal and compute $K \to (\pi \pi)_{I=2}$ amplitudes directly.

 \bullet $I = 0$ amplitudes seem hopeless in the quenched approximation. Call for new (clever) idea?

 \triangle Thanks to the organisers, collaborators and to all of you!