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Laboratoire de Physique Théorique
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Outline
� Simplest weak matrix element: K`3 decay

� K0 − K̄0: lattice estimate of B̂K [update]
� Getting to grips with ε′/ε
� New results for EW penguin (K → ππ) and QCD

penguin (via K → π)
� Assorted topics

I apologise to everyone whose work is not cited properly.
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Simplest weak matrix element
Decay constant and weak decay form factors
� Recent interest in K → π`ν:

� direct extraction from K`3 → |Vus| = 0.2201(24)

� indirectly, i.e. from the CKM unitarity→ |Vus| = 0.2269(21)

� which error is underestimated? Examine K`3

� ChPT calculation to NNLO completed (Bijnens, Talavera,

2003)

→ key observation : O(p6) LEC’s can be related to the scalar form factor

� Precision calculation of the scalar form factor on the lattice is possible

→ follow the strategy used in B → D`ν (Hashimoto et al,

2000)

� Exploratory study by SPQcdR
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K`3 decay

〈π−(p′)|ūγµs|K0(p)〉 =

(
p+ p′ − qµ
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K −M2
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)
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+qµ
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q2
f 0(q2)

Use f 0(0) = f+(0) ≡ f(0) ⊕ Ademollo-Gatto theorem

With improved Wilson quarks
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K ,M

2
π) =

〈π|V us
µ |K〉〈K|V su

µ |π〉
〈π|V uu

µ |π〉〈K|V ss
µ |K〉

∝ f 0/+(q2,M2
K ,M

2
π) +O(a2)

f 0(q2,M2
K ,M

2
π) = f 0(0,M2

K ,M
2
π)︸ ︷︷ ︸

1− ρ(M2
K −M2

π)2

(
1− q2/M2

V us

)

ρ =?
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K`3 decay - cont.
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Exploratory (quenched) study by

SPQcdR underway.

Unquenching SHOULD be done

too!

Statistics poor : errors small→ worth pursuing!
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K`3 decay - cont.
Info on the mass dependence of f(0)

?→ solution to the “|Vus| problem”
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f 0(
0) Large statistics is

necessary: doable
with currently avail-
able hardware!
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K0 − K̄0 mixing - recall
(K0, K

0
) 6= (KL, KS)⇒ the system oscillates.

Parameter measuring the indirect CP violation

εK =
A(KL → (ππ)I=0)

A(KS → (ππ)I=0)
' eiπ/4√
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Experimentally (PDG)

∆MK = (3.491± 0.009)

×10−15 GeV

εexp.
K = (2.280± 0.013)

×10−3eiπ/4
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K0 − K̄0 mixing - setup

εK ∼ 〈K̄0|H∆S=2
eff |K0〉 = C(µ) · 〈K̄0|

O1(µ)︷ ︸︸ ︷
s̄γµ(1− γ5)d s̄γµ(1− γ5)d |K0〉

s

d

W

s

d

W

u,c,t

s

s

d

d

O
1

� C(µ) info on SD dynamics: perturbation theory (A. Buras et al. 1995)

� low energy QCD dynamics

〈K̄0|Q(µ)|K0〉 =
8

3
f 2
Km

2
KBK(µ)

� AD to 2-loops in MS and RI/MOM (Altarelli et al. 1981, Buras et al.

1990)MS, (Ciuchini et al. 1997, Buras et al. 2000)RI/MOM

Weak Matrix Elements. . . “Lattice 2003” – p.8/38



K0 − K̄0 in the UTA

ρ
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♣ Hyperbola: |εK | = C B̂K A2λ6 η̄ [A2λ4 (1− ρ̄) Ftt + Ftc]

♣ Combined with sin 2β (direct CP-violation in B → J/ψKS):

two solutions for the vertex of the UTA (marked area – B-physics constraints)

♣ Crucial input B̂K : dominant uncertainty in UTA! Weak Matrix Elements. . . “Lattice 2003” – p.9/38



BK and lattices

� The only method allowing to compute the matrix elements of 4-f
operators from the first principles of QCD : capture the low energy
QCD physics, AND unambiguous matching with the continuum
renormalisation scheme at high energy scale µ

� Benchmark calculation of the 4-f operators on the lattice. Challenging
issues: matching and renormalisation, chirality, quenching

� HEP community is urging the lattice community to reduce the errors;
Lattice community is not converging to a consensus.
Several recent calculations require a critical overview.
Here is my take!
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BK with staggered quarks

:-) U(1)A symmetry protects BK (and mq) from additive renormalisation, i.e. BK has
a good chiral behavior

〈K̄0|O1(µ)|K0〉
∣∣
~pK=0

= αM2
K + βM4

K + . . .

:-( “Staggered flavor" symmetry is broken: non perturbative renormalisation (NPR)
unfeasible [(16 × 16)2 lattice operators to match onto 9 in continuum!] ⇒ 1-loop
perturbation theory : “wrong tasting" operators give ‘large’ contributions. As a
result, scaling violation pronounced.

−0.2 0.0 0.2 0.4 0.6 0.8
mρa

0.5

0.6

0.7

0.8

0.9

non−invariant
invariant

Extensive study by JLQCD (Aoki et

al,1998); Impressive lattices up to
563 × 96 @ β = 6.65WP !

BMS
K (2GeV) = 0.63(4)

Set-I : BMS
K (2GeV) = 0.67(6)

Set-II : BMS
K (2GeV)inv = 0.71(7)
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New:BK with staggered quarks (W.Lee et al)

� Taste symmetry breaking in the renormalisation gets largely sup-
pressed by fattening the link variable (Lee, Sharpe, 2003). The
most efficient is the HYP link fattening (cf. A.Hasenfratz,

Knechtli, 2001)

? at β = 6.0 and 163 × 64 and fitting to

BK = c0(1 + c1M
2
K log(M2

K)) + c2M
2
K ,

they get

BMS
K (2GeV) = 0.59(2)

? N.B. With similar lattice setup JLQCD had

BMS
K (2GeV) = 0.68(1) (cf. prev.transp.)

? Does the HYP-ening improve the scaling be-

havior? Such a study is needed.
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BK with Wilson quark action

:-( Wilson term explicitely breaks chiral symmetry:
CP⊗S (s ↔ d) symmetry, but no chirality → ad-
ditive renormalisation. Mixing with 4 other parity
even operators

O
1

= V × V + A× A
O

2
= V × V − A× A

O
3

= S × S − P × P
O

4
= S × S + P × P

O
5

= T × T

O1(µ) = Z1(aµ)

{
O1(a) +

5∑

k=2

∆
k
(a)O

k
(a)

}
(∂∆/∂µ = 0)

Sandwich this formula by kaons : 〈K̄0|O
k
|K0〉 ≡ 〈O

k
(a)〉

〈O1(µ)〉 = Z1(aµ)〈O1(a)〉


1 +

5∑

k=2

∆
k
(a)

VSA(for illustration!)︷ ︸︸ ︷
〈O

k
(a)〉/〈O1(a)〉




︸ ︷︷ ︸

1− 6∆2 −∆3 −∆5

8
− 4∆2 − 6∆3 + 5∆4 − 8∆5

8

(
MK

md(a) +ms(a)

)2

lim
mq→0

(MP/mq)
2 ' 1/mq →∞⇒ smallness of ∆i is irrelevant when close to mq → 0!
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BK Wilson - without subtraction
• Non-perturbative method to determine ∆

i
and Z1(aµ) devised in (Donini et

al,1999): RI/MOM(Landau) scheme.

• Better avenue: get rid of subtractions (DB et al,2000). Recall that the spurious
mixing in PV sector does not occur due to S-symmetry (Bernard, 1989)

• Ward Identity on the m.e.of the PV operator leads to the m.e. of the PC one. Rotation
around the 3rd axis in the isospace:

δu = γ5u δd = −γ5d

δū = ūγ5 δd̄ = −d̄γ5 (mu = md ≡ m)

2m〈
∑

~x,~y,~z,tz

Π(~z, tz) P (~x, tx) OV A+AV (0) P (~y, ty)〉 = 2〈
∑

~x,~y

P (~x, tx) OV V+AA(0) P (~y, ty)〉

+ correlators with chirally rotated sources, but they vanish by C-symmetry.

• SPQcdR checked in numerical data the consistency of 〈O1〉 ≡ 〈OV A+AV 〉, as obtained
by methods with and without subtractions (method with subtr. supplied by ∆i’s fixed
NP’ly)!(DB et al,2001 and 2002)
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BK Wilson - how to extract it?
• Strategy-I: Valid when chirality is guaranteed (staggered use this). With Wilson, even

with tricks to get rid of subtractions, chirality is still missing (O(a) effects present!),
and we have

〈
∑

~x,~y

P (~x, tx) O1(0) P (~y, ty)〉

(8/3)〈
∑

~x

P (~x, tx)A0(0)〉〈
∑

~y

A0(0)P (~y, ty)〉
→ 〈K̄0|O1|K0〉

(8/3)|〈0|A0|K0〉|2 =
〈K̄0|O1|K0〉+O(a)

(8/3)f 2
KM

2
K

= BK +O(a/M 2
K)

Devilish game! Without the manifest chiral symmetry, results acceptable IFF
M2

K ∼ mq are large “enough" and by taking a→ 0. N.B. that NOTHING can be said
about the change of BK when approaching the chiral limit!

• Strategy-II: Safe road if assuming exact SU(3) (Gavela et al,1988), and

C
(3)
PO1P

(x, 0, y)

C
(2)
PP (x, 0)C

(2)
PP (0, y)

→ 〈K̄0|O1 |K0〉
|〈0|P |K0〉|2

fit
= α +BK

8

3

|〈0|A0|K0〉|2
|〈0|P |K0〉|2

This strategy can rescue the current extractions of BK from DWF action, in which the
subtractions of d = 6 operators were so far ignored (Will get back to that later!)

Weak Matrix Elements. . . “Lattice 2003” – p.15/38



BK Wilson - result
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WITHOUT subtractions

SPQcdR

SPQcdR : without subtractions, high
statistics at βWP = 6.0, 6.2 and
6.4, NPR! Conversion to MS at
NLO in perturbation theory gives

BMS
K (2GeV) = 0.64(8)

? I don’t see this result improving soon
? Consistent with SPQcdR and JLQCD
estimates with subtraction followed by
a→ 0

• Alternative way of getting the Wilson BK without subtractions : use tmQCD. (cf.
Frezzotti, @ "Lattice 2002")
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BK with tmQCD

S =
∑

x

[
ψ̄(x) (/D +mq + iµqγ5τ3)ψ(x) + s̄ (/D +ms) s

]
, ψ = (u d)T mu = md ≡ mq

is invariant under: ψ → exp(iαγ5τ3/2)ψ, ψ̄ → ψ̄ exp(iαγ5τ3/2) for tanα = µq/mq

• Axial rotation of OV V+AA leads to

〈K̄0|OV A+AV |K0〉α=π/2
tmQCD = i〈K̄0|OV V+AA|K0〉α=0

tmQCD ≡ i〈K̄0|O1 |K0〉QCD

• Important advantage of tmQCD : no exceptional configurations
⇒ getting closer to the chiral limit.

• Last year NPR implemented in the Schrödinger functional scheme (Guagnelli et

al, 2002). NLO anomalous dimension of O1 in that scheme is missing.
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New: BK with tmQCD by Dimopoulos et al. – Alpha

A PRELIMINARY result at βWP = 6.0, on 163× 48 lattice (cca 200 configs).
Strategy-I employed to extract BK , but they work with mP > 600 MeV.
Strategy-II pushes BK upwards(!)
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Picture : Strategy-II
chiral behavior of 〈O

1
〉

They quote (PRELIMINARY!)

BMS
K (2GeV) = 0.67(2)

? Two loop AD ofO
1

in the SF scheme
is needed
? Perspective:
Getting to lighter meson masses and
a→ 0.
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BK with DWF (RBC)
DWF action satisfies the Ginsparg–Wilson relation {D−1, γ5} = γ5

⇒ chiral symmetry guaranteed at finite lattice spacing.
In practice, chiral symmetry not exact : residual mass term in AWI.
Coarse lattices m5q 6→0, even with N5 →∞. On finer lattices (1/a ∼ 2 GeV), and with WP
gauge action, not clear if limN5→∞m5q = 0. Improved gauge action (IW) reduce m5q by an
order of magnitude (Aoki et al, 2001)

♣ RBC (WP-action), 163 × 32× 16, 400 configs, (Blum et al, 2001)

NPR in the RI/MOM scheme; by using Strategy-I, they get BMS
K (2GeV) = 0.532(11)
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BK (latt) vs mfa, 77 confs.

at mf = ms/2
ξ0[1+C’(mfa)ln(mfa)]+ξ1(mfa)

NEW result this year (see J.Noaki’s
talk), from 77 configs at βDBW2 = 1.22
(1/a = 2.9(1) GeV), their PRELIMINARY
value is

BMS
K (2GeV) = 0.552(11)

F Subtractions ignored! Strategy-I may
lead to a wrong BK (b/c of mixing with op-
erators that scale like 1/mq)
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BK with DWF (CP-PACS)
♣ CP-PACS, βIW = 2.6 (1/a ' 1.9 GeV) and βIW = 2.9 (1/a ' 2.8 GeV). several

lattices: as large as 323 × 60× 16! (Ali Khan et al, 2001)

Renormalisation perturbative (S.Aoki et al, 2001); by using Strategy-I, in

a→ 0, they quote BMS
K (2GeV) = 0.575(6)(19)
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BP vs Xf
2  (DBC)

β=2.9(RG) 323x60x16 M=1.8
HOWEVER if the Strategy-II is adopted:
at 1/a ∼ 1.9 GeV

BMS
K (2GeV) = 0.737(6)

and at 1/a ∼ 2.8 GeV

BMS
K (2GeV) = 0.723(6).

In a→ 0 this leads to

BMS
K (2GeV) = 0.696(7)(23)

Thanks to Yusuke Taniguchi!
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BK with Overlap DeGrand et al. (MILC)

NEW: smaller quark masses than last year, 2 sets of data: [β = 5.9 (123× 36), 80 configs]
and [β = 6.1 (163×48), 60 configs] WP + HYP link which kills lattice tadpoles→ better matching
to continuum. Perturbative renormalisation (T.DeGrand, 2002)
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BK(β=5.9)  
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Strategy-I is appropriate:
at β = 5.9,

BMS
K (2GeV) = 0.54(2), and

at β = 6.1,
BMS
K (2GeV) = 0.55(3).

Attempt a→ 0, gives
BMS
K (2GeV) = 0.56(5)
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BK with Overlap Boston-Marseille

Last year preliminary→ this year definitive result from 80 configs at βWP = 6.0 (163× 32).

NPR in the RI/MOM scheme. They obtain BMS
K (2GeV) = 0.62(6)(1) (N.Garron et al,

2003)

Speculate that the perturba-
tive coefficient of the chiral
log term would reduce BK to
BMS
χ (2GeV) ' 0.35.
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BK conclusion
♣ Although with unpleasant scaling violations, staggered results for BK are the most

accurate (a→ 0 taken)

♣ Wilson fermions with methods that alleviate problems of mixing with d = 6 operators,
agree well with staggered result. However, no info on BK/Bχ! (a→ 0 taken)

♣ DWF : Strategy-II should be used AT LEAST to assess the systematic uncertainty. In
practice, the difference between the results from two strategies do not agree: (S-I)
mixing gives rise to 1/mq terms; (S-II) exact SU(3) is not verified esp. with smaller
mq.

♣ Overlap (Neuberger) fermions implemented. Results consistent with more
elaborated approaches. Must explore finer lattices and larger volumes (still costly!)

♣ Unquenching is a major worry! Problems not indicated in (Q)ChPT [log term is the
same (deg.case!)]. Sharpe’s guesstimate of irreducible 15% of quenching error
remains with us! Non-degeneracy vs. degeneracy is a tiny effect in full ChPT∼ 2%

♣ Finally, BMS
K (2 GeV) = 0.63(4)(±15%), i.e.

B̂K = 0.87(6)(13)
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ε′/ε
Direct CP-violation η 6= 0! NA48 and KTeV

ε′/ε = (16.6± 1.6)× 10−4

♣ A nightmare for theory: all problems in calculation of the matrix elements appear
there

♣ After decomposing K → ππ amplitudes into parts of definite isospin (I = 0, 2)

A(K+ → π+π0) =
√

3/2A2e
iδ2

A(K0 → π+π−) =
√

2/3A0e
iδ0 +

√
1/3A2e

iδ2

A(K0 → π0π0) =
√

2/3A0e
iδ0 +

√
4/3A2e

iδ2

one writes

ε′ =
ieiπ/4√

2

ReA2

ReA0︸ ︷︷ ︸
ω

(ImA2

ReA2︸ ︷︷ ︸
P 2

− ImA0

ReA0︸ ︷︷ ︸
P 0

)

♣ (1/ω)exp ≈ 22 – famous puzzle: large ∆I = 1/2 w.r.t. ∆I = 3/2.
P 2 and P 0 both large, difference small.

Weak Matrix Elements. . . “Lattice 2003” – p.24/38



ε′/ε

♣ Again, one employs OPE: Short distance dynamics for these (∆S = 1) processes
encoded in Wilson coefficients, all computed at NLO, 10 years ago by Rome and
Munich groups (Ciuchini et al and Buras et al 1993)

See recent paper by Buras and Jamin

♣ Relevant operators (out of 10) are: current-current

Q1 = (s̄d)
V−A(ūu)

V−A Q2 = (s̄adb)
V−A(ūbua)

V−A

QCD penguins

Q4 = (s̄adb)
V−A

∑

q=u,d,s

(q̄bqa)
V−A Q6 = (s̄adb)

V−A

∑

q=u,d,s

(q̄bqa)
V+A

Electroweak penguins

Q8 = (s̄adb)
V−A

∑

q=u,d,s

(q̄bqa)
V+A

Q9 = (s̄d)
V−A

∑

q=u,d,s

(q̄q)
V−A

Need to calculate 〈(ππ)I |Qi|K〉
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ε′/ε : matrix elements
Matrix elements can be computed in 3 ways

◦ INDIRECTLY : In the chiral limit, relate K → ππ to K → π and K → 0, which are
simpler to compute (C.Bernard et al 1985)

Chirality is crucial!
Early calculations with staggered fermions (Kilcup, Pekurovsky,1999).
Heroic effort by CP-PACS and RBC collaborations with DWF (RBC: Blum et al,

hep-lat/0110075; CP-PACS: Ali Khan et al, hep-lat/0108013)

◦ DIRECTLY but with UNPHYSICAL kinematics (to avoid Maiani-Testa theorem), and
then extrapolate to the physical point by using ChPT. SPQcdR carries out such a
project by using Wilson fermions
(Boucaud et al, 2001; D.B. et al, 2002)

◦ DIRECTLY in finite volume, by using the Lellouch–Lüscher formula. For a
reasonable discretisation (a), huge lattice volumes are needed to have L ≈ 6 fm
(crucial condition for the applicability of the method).
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∆I = 1/2 rule
♣

(1/ω)exp ≈ 22 1/ω =
ReA0

ReA2

{〈Q1〉, 〈Q2〉} ∈ ReA0,2 〈Q6〉 ∈ ReA0

SD physics (1/ω)NLO
SD ≈ 2. The rest is non-perturbative. ITEP group first pointed out

at Q6, which was/is expected to be the answer to the puzzle (Shifman et al,

1977). Computation of 〈Q6〉 very demanding!

♣ Lattice:
RBC : 1/ω = 25.3± 1.8± syst. CP-PACS : 1/ω = 9.5

(
+3.2
−1.8

)
± syst.

Both see that 〈Q6〉 is very small, i.e. irrelevant for ∆I = 1/2 rule.
How do they see this enhancement of 1/ω? Bχ

K -again- is the answer!

♣ CP-PACS and RBC:
They agree on ReA0, but not on ReA2.

〈π+|Q3/2
1,2 |K+〉 =

9

4
f 2
Km

2
KB

χ
K
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∆I = 1/2 rule cont.
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Fixed log.

χχχχ2 / nod = 0.09
αααα = 0.2581(79)

Un-known log.

χχχχ2 / nod = 0.09
αααα = 0.2749(58)
C = 5.2(2.6)

RBC
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M2 ( GeV2 )

Un-known log.

χχχχ2 / nod = 0.6
αααα  = 0.380(43)
C = 2.5(1.1)

omit for fit

Fixed log. 

χχχχ2 / nod = 3.2
αααα = 0.2783(32)

CP-PACS

Fit to a form (α ≡ Bχ
K )

BK = α

(
1 + βM 2 + C

M 2

(4πf)2
log(M 2/Λ2

χ)

)

� RBC-consistent with CChPT = −6,
CP-PACS not consistent

� RBC quote the result by fixing C = −6 in
the fit, CP-PACS treats C as a free parame-
ter. Thus the difference!

My previous comments on BDWF
K obviously ap-

ply here too.

Weak Matrix Elements. . . “Lattice 2003” – p.28/38



What about 〈Q6〉?
� Q

1/2
i have "penguin" contractions: mixing with lower dimensional operators

Qsub = (ms +md)s̄d+ (ms −md)s̄γ5d, to be subtracted away!
Use CPS and parity (chirality is a must!), and subtractions are made by imposing
(C.Bernard et al, 1985)

〈0|Q6 − α6Qsub|K〉 = 0

Likewise for other ∆I = 1/2 operators. Q6 nightmareish : subtraction almost
completely washes out the signal.

� In full theory Q6 ∈ (8L, 1R) irrep of SU(3)L ⊗ SU(3)R. In quenched theory,
SU(3)→ SU(3|3), Q6 is not a singlet under SU(3|3)R ⇒ Qfull

6 6= Qquench
6

(Golterman, Pallante, 2001)

If simply transcribed from full to quenched QCD (ψ = (q, q̃)T , N = ([1diag]⊕ [−1diag]):

Q6 =
1

2
QS

6 +QNS
6 : QS

6 = (s̄adb)
V−A

∑

q

(ψ̄bψa)
V+A

QNS
6 = (s̄adb)

V−A

∑

q

(ψ̄bNψa)
V+A

A serious problem for all quenched estimates of 〈Q6〉!

Weak Matrix Elements. . . “Lattice 2003” – p.29/38



NEW: B6 staggered
� A way out proposed by Golterman & Pallante: kick out QNS

6 . It reduces to omitting the q̄q contractions

in ”eye” and annihilation diagrams. However, there is no unique way to get rid of QNS
6 .

Golterman & Peris argued that anyway αQ1 (8,1)/α1 (8,1) < 1: i.e. Quenched 〈Q6〉 smaller than the full

one!

� Bhattacharya et al: with HYP-staggered; subtraction is made à la Bernard et al.; same lattice setup as

discussed for BK (see also talk by W.Lee)
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NEW: B6 staggered
� They compute B6 parameter

〈(ππ)I=0|Q6(µ)|K〉(0) = −4

√
3

2
(fK − fπ)

(
M2

K

ms(µ) +md(µ)

)2

B6(µ)

♣ Result in the MS(NDR) of Buras et al is
Bstand.

6 (mc) = 0.73(9) BGP
6 (mc) = 0.98(7)

the value used in the standard ε′/ε analyses for ages.

? Their “standard" value is more than 2 times larger than CP-PACS
B6(mc) ≈ 0.3 (similar situation with RBC – their B6 even smaller)

−→〈Q6〉 is still controversial!
Plugging the BGP

6 and B3/2
8 = 1.0(2)NEW, in the Buras & Jamin (BJ) formula, they get

ε′/ε = (10.9± 1.5)× 10−4

2 comments:

(1) P 0 part of the BJ formula contains the isospin breaking term whose value is also controversial:

ΩIB = 0.15 ÷ 0.20, confirmed recently by Cirigliano et al. On the other side, S.Gardner

suggests ΩIB ∈ (0.05, 0.78). Be very affraid!

(2) Would be interesting if W.Lee et al. computed 〈Q2〉, to see if they agree with findings from DWF.
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K → ππ from K → π, K → 0 (remarks)

� Problem of subtractions may be tackled by using tmQCD. By a judicous choice of 2
twisting angles (dynamical charm!), in the quenched approximation, it is possible to
eliminate the power divergence problem altogether (see S.Sint’s talk)
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� How to reach the chiral limit with K → π

and K → 0 is a difficult problem.

� with RBC results, D.Lin shows that hitting

the chiral limit is ambiguous (vertical line,

”arbitrary” point at which the polynomial

and log-dominated behavior match)

� FSI ignored

� µ = mc is very low for OPE to set in; With

dynamical charm, GIM efficient for ReA0

(but not for ImA0)

� Unquenching tackled this year for the 1st

time: First results from the unquenched

study by RBC (see talk by R.Mawhinney).
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NEW: ∆I = 3/2 by SPQcdR
♠ Direct computation of 〈ππ|Q3/2

7,8 |K〉, but with SPQR kinematics: K and one π in the final state are at

rest; the other pion moves (~pπ = 0, 2π/L, considered). When ~pπ 6= 0, to have |(ππ)I=2〉 state

important to symmetrise as [(|π+(~p)π0(~0)〉+ |π+(~0)π0(~p)〉]/2, to remove I = 1 component.

♠ Quenched study at βWP = 6.0 (243 × 64), 480 configs with Wilson quarks. Matching and

renormalisation done nonperturbatively (in RI/MOM).

♠ Extracted amplitudes are functions of MK , Mπ and Eπ. (Q)ChPT expressions worked out at NLO by

(D.Lin et al, 2003)

♠ QChPT expression : no suitable description of the data points (simulated pions Mπ > 500 MeV).
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NEW: ∆I = 3/2 by SPQcdR cont.
F To go to the physical limit they fit the data to the polynomial form in general kinematics, match to the

SPQR kinematics enriched by the (full-physical) chiral logs at some mM . That fix all the low energy

constants, after which they extrapolate to the physical pion and kaon masses.

F The point at which the smooth matching is made (from which the chiral log behavior becomes important

in extrapolation) is varied between 0.3-0.5 GeV, and th spread is included in the syst.error.

0 0.2 0.4 0.6 0.8 1
M π

2

0

0.5

1

1.5

polynomial−ChPT  matching at M π=E π=0.4 GeV, MK=0.41 GeV

data points��
polynomial fit (M π

2 > 0.16 GeV2)  −  ChPT matching (Mπ
2 < 0.16 GeV2)

chiral limit
<O8>I=2

RESULT in MS(NDR) at µ = 2 GeV:

〈ππ|Q3/2
8 |K〉 = 0.664(57) 40

38

) (
50
40

)

As a byproduct they also compute

〈ππ|Q3/2
7 |K〉 = 0.111(10)

(
6
4

)
(6)

(see poster by M.Papinutto) N.B. The errors due

to the ππ-phase shift and the finite volume effects

are not included in the final systematics (i. Lellouch–

Lüscher factor applies to the center of mass frame of

2 pions; ii. QChPT formula does not fit the data, so

its finite volume version cannot be used).
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Direct calculation of ∆I = 1/2 amplitudes?

• Lin, Martinelli, Pallante, Sachrajda, Villadoro, 2003:
Lack of unitarity in the (partially) quenched theory induces several horrendous
problems to SPQcdR:
(i) no Watson theorem→ FSI phase is not universal (depends on the operator used
to create two pion state);
(ii) no unambiguous way to form the time independent ratios of correlation functions
in order to extract the desired amplitudes from the lattice (η ′ propagates with other
PGB – it does not decouple from the octet)
(iii) Amplitudes increase with the size of the lattice volume (see also
Golterman,Pallante,2000)
(iv) Lüscher’s quantisation condition and LL formula are not valid any more

• Laiho, Soni, 2003:
PQCD may be good enough for K → 0, K → π and K → π(~0)π(~0). A specially
good is the situation in which msea = mval. = mu = md, in which the finite volume
enhancement dissapears (see J.Laiho’s talk)
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Many other issues that I cannot cover today...

• Young Ross:
Adelaide group computed µp and µ∆+ . They observe a strong nonlinearity that is
very well fit by the expressions derived in QChPT. (Unambiguous evidence for the
quenched chiral log?)

• A.Schindler & I.Wertzorke:
NPR twist-2 〈x〉π, strong dependence on the lattice volume is getting under control.
First physical result? (see their talks)

• Y.Aoki (RBC):
Hadronic matrix element of proton decay: feasibility study with DWF

• T.Yamazaki (JLQCD), K.J.Juge (GRB), C.Kim (RBC) :
π − π: a2

0 and δ2(W )

• G.C.Rossi:
In what way their proposal to use SW (+r) and SW (−r) to reduce all O(a) effects,
may be useful in kaon physics?

• Y.Aoki (RBC):
Hadronic matrix element of proton decay: feasibility study with DWF
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Questions, requests, comments . . .

? BK

UNQUENCH, UNQUENCH, UNQUENCH . . .
World average remains:

B̂K = 0.87(6)(13)

second error is due to quenching (this afternoon RBC presents BDWF
K with nF = 2).

UNQUENCH, UNQUENCH, UNQUENCH . . .

♠ Props to RBC and CP-PACS for a huge effort with DWF
Important: NLO chiral corrections must be implemented.
What would they obtain if implemented the GP proposal?
Overlap fermions have not been explored yet.

♣ To get to the physical K → ππ, Avenue-1: ChPT. There exists Avenue-2 too:
dispersion relations (Bourrely, Caprini, Micu, 2002; Bücher et al

2001) with bouble diagrams resummed à la Omnès (subtraction constants can be
fixed from the matrix elements already computed on the lattice!)
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Questions, requests, . . .
� ε′/ε:

Do the collaborations using staggered fermions see large 〈Q2〉 (i.e. large to get 1/ω

right)?
More studies of 〈Q4〉 are needed: if 〈Q6〉 is indeed small (quenching is a scare!),
then probably Buras& Jamin should include explicitely 〈Q4〉 in their formula.

• “Directly" obtained value for the EW penguin in quenched approximation (SPQcdR)
is by a factor 2-4 smaller than the predicitions based on analytic (phenomenological)
approaches by Bijnens et al, Donoghue et al, DeRafael et al. Why?
Community is strongly encouraged to implement LL proposal and compute
K → (ππ)I=2 amplitudes directly.

• I = 0 amplitudes seem hopeless in the quenched approximation. Call for new
(clever) idea?

♠ Thanks to the organisers, collaborators and to all of you!
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