Nucleon axial charge from quenched lattice QCD with DBW2 gauge action and domain wall fermions

Shigemi Ohta* for the RBC collaboration

January 23, 2003, Asia-Pacific Mini Workshop on Lattice QCD, Tsukuba

Domain wall fermions (DWF) preserves almost exact chiral symmetry on the lattice:

• by introducing a fictitious fifth dimension in which the symmetry violation is exponentially suppressed.

DBW2 ("doubly blocked Wilson 2") action improves approach to the continuum:

• by adding rectangular (2×1) Wilson loops to the action.

By combining the two, the "residual mass," which controls low energy chiral behavior, is driven to

• $am_{\rm res} < O(10^{-4})$ or $\ll {\rm MeV}$.

Success in: chiral symmetry and ground-state mass spectrum¹, Kaon matrix elements², N^* mass³, ...

So what about g_A , perhaps the simplest of nucleon electroweak matrix elements?

^{*}Institute of Particle and Nuclear Studies, KEK, Tsukuba, Ibaraki 305-0801, Japan and RIKEN-BNL Research Center, Brookhaven National Laboratory, Upton, NY 11973, USA

¹T. Blum et al, hep-lat/0007038, to appear in PRD.

²T. Blum et al, RBRC Scientific Articles 4; hep-lat/0110075.

³S. Sasaki et al, Phys. Rev. D65, 074503 (2002); hep-lat/0102010.

From neutron β decay, we know $g_V = G_F \cos \theta_c$ and $g_A/g_V = 1.2670(30)^4$:

- $g_V \propto \lim_{q^2 \to 0} g_V(q^2)$ with $\langle n|V_\mu^-(x)|p\rangle = i\bar{u}_n[\gamma_\mu g_V(q^2) + q_\lambda \sigma_{\lambda\mu} g_M(q^2)]u_p e^{-iqx}$,
- $g_A \propto \lim_{q^2 \to 0} g_A(q^2)$ with $\langle n|A_{\mu}^-(x)|p\rangle = i\bar{u}_n\gamma_5[\gamma_{\mu}g_A(q^2) + q_{\mu}g_P(q^2)]u_pe^{-iqx}$.

On the lattice, in general, we calculate the relevant matrix elements of these currents

- with a lattice cutoff, $a^{-1} \sim 1-2 \text{ GeV}$,
- and extrapolate to the continuum, $a \to 0$,

introducing lattice renormalization: $g_{_{V,A}}^{\text{renormalized}} = Z_{_{V,A}} g_{_{V,A}}^{\text{lattice}}$.

Also, unwanted lattice artefact may result in unphysical mixing of chirally distinct operators.

DWF makes $g_{\scriptscriptstyle A}/g_{\scriptscriptstyle V}$ particularly easy, because:

- the chiral symmetry is almost exact, and
- maintains $Z_A = Z_V$, so that $g_A^{\text{lattice}}/g_V^{\text{lattice}}$ directly yields the renormalized value.

⁴The Particle Data Group.

T = 1/2 mass spectrum: N(939) and N'(1440) with positive parity, and $N^*(1535)$ with negative parity

- NR quark models and bag models fail here.
- Quenched DWF works well for N(939)-N*(1535) parity partner mass splitting ⁵:

So DWF seems to have a good prospect for nucleon matrix elements:

 \bullet $g_{\scriptscriptstyle A}$ is a particularly interesting exercise, because with DWF, $Z_{\scriptscriptstyle A}=Z_{\scriptscriptstyle V}$ can be and is maintained.

 $^{^5\}mathrm{See}$ S. Sasaki et al, Phys. Rev. D65:074503,2002; hep-lat/0102010 for more detail.

While historically

- NR quark model gives 5/3,
- MIT bag model gives 1.07,
- \bullet lattice calculations with Wilson or clover fermions typically underestimates by up to 25 %:

type	group	fermion	lattice	β	volume	configs	$m_{\pi}L$	$g_{\scriptscriptstyle A}$
quenched	KEK^a	Wilson	$16^3 \times 20$	5.7	$(2.2 {\rm fm})^3$	260	≥ 5.9	0.985(25)
	Liu et al ^{b}	Wilson	$16^3 \times 24$	6.0	$(1.5 {\rm fm})^3$	24	≥ 5.8	1.20(10)
	DESY^c	Wilson	$16^3 \times 32$	6.0	$(1.5 { m fm})^3$	1000	≥ 4.8	1.074(90)
	$LHPC$ - $SESAM^d$	Wilson	$16^{3} \times 32$	6.0	$(1.5 {\rm fm})^3$	200	≥ 4.8	1.129(98)
	QCDSF^e	Wilson	$24^3 \times 48$	6.2	$(1.6 { m fm})^3$	O(300)		1.14(3)
			$32^3 \times 48$	6.4	$(1.6 { m fm})^3$	O(100)		
			$16^{3} \times 32$	6.0	$(1.5 {\rm fm})^3$	O(500)		
	$\mathrm{QCDSF}\text{-}\mathrm{UKQCD}^f$	Clover	$24^3 \times 48$	6.2	$(1.6 { m fm})^3$	O(300)		1.135(34)
			$32^3 \times 48$	6.4	$(1.6 { m fm})^3$	O(100)		
$full(N_f=2)$	$LHPC$ - $SESAM^d$	Wilson	$16^3 \times 32$	5.5	$(1.7 {\rm fm})^3$	100	≥ 4.2	0.914(106)
	SESAM^g	Wilson	$16^3 \times 32$	5.6	$(1.5 {\rm fm})^3$	200	≥ 4.5	0.907(20)

^aM. Fukugita, Y. Kuramashi, M. Okawa and A. Ukawa, Phys. Rev. Lett. 75, 2092 (1995).

– with $Z_{\scriptscriptstyle A} \neq Z_{\scriptscriptstyle V}$ and other renormalization complications.

^bK.F. Liu, S.J. Dong, T. Draper and J.M. Wu, Phys. Rev. D49, 4755 (1994).

^cM. Göckeler et al, Phys. Rev. D53, 2317 (1996).

 $^{^{}d}$ D. Dolgov et al, hep-lat/0201021.

 $[^]e\mathrm{S.}$ Capitani et al, Nucl. Phys. B (Proc. Suppl.) 79, 548 (1999).

 $[^]f\mathrm{R.}$ Horsley et al, Nucl. Phys. B (Proc. Suppl.) 94, 307 (2001).

^gS. Güsken et al, Phys. Rev. D59, 114502 (1999)

Our formulation follows the standard one.

- Two-point function: $G_N(t) = \text{Tr}[(1 + \gamma_t) \sum_{\vec{x}} \langle TB_1(x)B_1(0) \rangle]$, using $B_1 = \epsilon_{abc}(u_a^T C \gamma_5 d_b) u_c$ for proton,
- Three-point functions,

- vector:
$$G_V^{u,d}(t,t') = \text{Tr}[(1+\gamma_t) \sum_{\vec{x'}} \sum_{\vec{x'}} \langle TB_1(x')V_t^{u,d}(x)B_1(0)\rangle],$$

- axial:
$$G_A^{u,d}(t,t') = \frac{1}{3} \sum_{i=x,y,z} \text{Tr}[(1+\gamma_t)\gamma_i\gamma_5 \sum_{\vec{x'}} \sum_{\vec{x}} \langle TB_1(x')A_i^{u,d}(x)B_1(0) \rangle].$$

with fixed $t' = t_{\text{source}} - t_{\text{sink}}$ and t < t'.

• From the lattice estimate

$$g_{\Gamma}^{
m lattice} = rac{G_{\Gamma}^u(t,t') - G_{\Gamma}^d(t,t')}{G_{N}(t)},$$

with $\Gamma = V$ or A, the renormalized value

$$g_{_{\Gamma}}^{
m ren}=Z_{_{\Gamma}}g_{_{\Gamma}}^{
m lattice},$$

is obtained.

• Non-perturbative renormalizations, defined by

$$[\bar{u}\Gamma d]_{\rm ren} = Z_{\Gamma}[\bar{u}\Gamma d]_0,$$

satisfies $Z_{\scriptscriptstyle A}=Z_{\scriptscriptstyle V}$ well, so that

$$\left(rac{g_{\scriptscriptstyle A}}{g_{\scriptscriptstyle V}}
ight)^{
m ren} = \left(rac{G^u_{\scriptscriptstyle A}(t,t') - G^d_{\scriptscriptstyle A}(t,t')}{G^u_{\scriptscriptstyle V}(t,t') - G^d_{\scriptscriptstyle V}(t,t')}
ight)^{
m lattice} \,.$$

 $g_{\scriptscriptstyle A}$ is also described as $\Delta u - \Delta d$.

Numerical calculations with Wilson (single plaquette) gauge action:

- RIKEN-BNL-Columbia QCDSP,
- 400 gauge configurations, using a heat-bath algorithm,
- $\beta = 6.0, 16^3 \times 32 \times 16, M_5 = 1.8,$
- source at t = 5, sink at 21, current insertions in between.

 $Z_{\scriptscriptstyle V} = 1/g_{\scriptscriptstyle V}^{
m lattice}$ is well-behaved,

- the value 0.764(2) at $m_f = 0.02$ agrees well with $Z_A = 0.7555(3)$ from $-\langle A_\mu^{\rm conserved}(t)\bar{q}\gamma_5q(0)\rangle = Z_A\langle A_\mu^{\rm local}(t)\bar{q}\gamma_5q(0)\rangle \ ({\rm RBC\ hep-lat/0007038,\ to\ appear\ in\ Phys.\ Rev.\ D}),$
- linear fit gives $Z_V = 0.760(7)$ at $m_f = 0$, and quadratic fit, 0.761(5).

 $\Delta u,\,\Delta d,\, {\rm and}\ g_{{\scriptscriptstyle A}}/g_{{\scriptscriptstyle V}}$ (averaged in $10\leq t\leq 16)$:

- linear extrapolation yields 0.81(11) at $m_f = 0$, and similarly small values for
 - $-\Delta q/g_{_{V}}=0.49(12)$ and
 - $-~(\delta q/g_{_V})^{\rm lattice} = 0.47(10)$ (with a preliminary $Z_{_T} \sim 1.1).$
- ullet While relevant three-point functions are well behaved in DWF, and $Z_{\scriptscriptstyle V}=Z_{\scriptscriptstyle A}$ is well satisfied, 0.760(7) and 0.7555(3).

Why so small?

- finite lattice volume ⁶,
- excited states (small separation between t_{source} and t_{sink}),
- quenching (zero modes, absent pion cloud, ...).

To investigate size-dependence, we simultaneously need

- good chiral behavior, i.e. close enough to the continuum, and
- big enough volume.

Improved gauge actions help both. DBW2⁷, in particular,

$$S_G = \beta [c_0 \sum W_{1,1} + c_1 \sum W_{1,2}],$$

with $c_0 + 8c_1 = 1$ and $c_1 = -1.4069$:

- very small residual chiral symmetry breaking, $am_{\rm res} < 10^{-3}$,
- at the chiral limit, $am_{\rho} = 0.592(9)$ (so $a^{-1} \sim 1.3 \text{GeV}$), $m_{\rho}/m_N \sim 0.8$,
- $m_{\pi}(m_f = 0.02) \sim 0.3a^{-1}$.

 $^{^6}$ R.L. Jaffe, Phys .Lett. B529:105, 2002; hep-ph/0108015. See also T.D. Cohen, Phys. Lett. B529:50, 2002; hep-lat/0112014.

⁷QCD-TARO collaboration, Nucl. Phys. B577, 263 (2000); RBC collaboration, in preparation.

DBW2 calculations are performed at $a \sim 0.15$ fm ($\beta = 0.87$) with both wall and sequential sources on

- $8^3 \times 24 \times 16$ ($\sim (1.2 \text{fm})^3$), 400 configurations (wall) and 160 (sequential),
- $16^3 \times 32 \times 16$ ($\sim (2.4 \text{fm})^3$), 100 configurations (wall and sequential),
- source-sink separation of about 1.5 fm,
- $m_f = 0.02, 0.04, ...$: $m_{\pi} \ge 390 \text{MeV}, m_{\pi} L \ge 4.8 \text{ and } 2.4.$

Renormalization factors: $\mathcal{O}^{\text{ren}}(\mu) = Z_{\mathcal{O}}(a\mu)\mathcal{O}^{\text{lattice}}(a)$.

- Z_V shows slight quadratic dependence on m_f as expected: $V_{\mu}^{\text{conserved}} = Z_V V_{\mu}^{\text{local}} + \mathcal{O}(m_f^2 a^2)$,
 - yielding a value $Z_{\nu} = 0.784(15)$,
 - agrees well with $Z_{\scriptscriptstyle A}=0.77759(45)$ ⁸.

⁸RBC Collaboration, in preparation: this value is obtained from a relation $\langle A_{\mu}^{\text{conserved}}(t)[\bar{q}\gamma_5q](0)\rangle = Z_A \langle A_{\mu}^{\text{local}}(t)[\bar{q}\gamma_5q](0)\rangle$.

Bare g_A^{lattice} from wall source show volume dependence at medium m_f ((2.4fm)³ (filled) and (1.2fm)³ (open) volumes):

Bare $\Delta u^{\text{lattice}}$ and $\Delta d^{\text{lattice}}$ from sequential source ((2.4fm)³):

Bare g_V^{lattice} from sequential source ((2.4fm)³):

 $(g_A/g_V)^{\text{lattice}}$ from sequential source ((2.4fm)³):

 $(g_A/g_V)^{\text{lattice}} = (g_A/g_V)^{\text{ren}}$: m_f and volume dependence in bare and physical scales $(m_\rho$ and Sommer):

- Clear volume dependence is seen between $(2.4 \text{fm})^3$ and $(1.2 \text{fm})^3$ volumes.
- The large volume results (sequential)
 - show a very mild m_f dependence,
 - extrapolate to about 8 % under estimation, $g_{\scriptscriptstyle A}=1.15(11).$
- The large volume wall source and small volume sequential source calculations still lack in statistics.

Alternatively we can use $g_{\scriptscriptstyle A}^{\rm lattice} \times Z_{\scriptscriptstyle A}$:

agree well with $(g_{\scriptscriptstyle A}/g_{\scriptscriptstyle V})^{\rm lattice}$ in the chiral limit, and an expected difference seen away from there.

Conclusions: with quenched DBW2 and DWF for nucleon currents, indications are seen for

- good chiral behavior:
 - especially the relation $Z_{\scriptscriptstyle A}=Z_{\scriptscriptstyle V}$ is easily and well maintained,
- milder m_f dependence,
- clear size dependence, 20 % increase from 1.2 fm to 2.4 fm,
- $g_A/g_V = 1.21(3)_{\text{stat.}}(3)_{\text{syst.}}$, where
 - the systematic error is estimated from $Z_{\scriptscriptstyle A}$ systematics only,
 - and does not include the volume systematics yet.

Future:

- a few more observables, e.g. interesting to see how well quenched calculation works
 - for a well-known example of soft-pion, Goldberger-Treiman relation: $g_{\scriptscriptstyle A}/g_{\scriptscriptstyle V}\simeq f_\pi g_{\pi N}/m_N,$
- larger volume,
- flavor structure,
- full QCD,
- probably using the new QCDOC computer.

Other nucleon observables:

- moments of structure functions (Kostas Orginos),
- form factors (?),
- nucleon decay matrix elements (Yasumichi Aoki).