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Introduction

Monte Carlo simulations of QCD with dynamical quarks are
done in most cases at relatively large quark masses (typically
two quark flavours with mud ≥ ms/2.)
This makes the extrapolation to the physical point mud '

ms/20 rather uncertain.

The extrapolation is done by using (PQ-)ChPT – typically
to NLO (1-loop) order.
Estimates (see Sharpe-Shoresh, ...) show that one should
perform simulations in the range mud < ms/5.

For controlling higher orders (NNLO, NNNLO, resonance
contributions, ...) models à la Adelaide (Leinweber et al.)
could be very useful.

Unquenched numerical simulations at smaller quark masses
represent a great challenge for computations.
The problem is the singularity of the effective gauge action
(log detQ) at zero fermion mass. This implies, for instance,
the divergence of the fermionic force near zero fermion mass.
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Cost estimate for simulation of light quarks

Going to light quark masses in unquenched QCD simulations
is a great challenge for computations because known
algorithms have a substantial slowing down towards small
quark masses.
The computational cost of a simulation with two light
quarks can be parametrized as

C = F (r0mπ)−zπ

(

L

a

)zL (r0

a

)za

Here r0 is a physical length, for instance the Sommer scale
parameter, mπ the pion mass, L the lattice extension and
a the lattice spacing.

The value of the constant factor F depends on the
precise definition of “cost”. For instance, one can
consider the number of floating point operations in one
autocorrelation length of some important quantity, or the
number of fermion-matrix-vector-multiplications necessary
for achieving a given error of a quantity.
The cost also depends on the particular choice of the lattice
action and of the dynamical fermion algorithm, which should
be optimized.
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qq+q Collaboration:
F. Farchioni, C. Gebert, I.M., E. Scholz, L. Scorzato

Using the TSMB algorithm for Nf = 2 simulations on
83 · 16 lattices at a ' 0.27 fm and going down to small
quark masses mq < ms/5 ' 20 MeV.

Integrated autocorrelations:
For the quark mass dependence of τ plaq

int we obtain the
power zπ = 4 with F = 0.77 · 109flop.
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Figure 1: Power fit of the plaquette autocorrelation given in

106 MVM ' 1.1 · 1013 flop as a function of the dimensionless

quark mass parameter Mr = (r0mπ)
2.
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Autocorrelation of the pion mass: τmπ
int

is in most cases substantially shorter than that of the
average plaquette.
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Figure 2: Power fit of the pion mass autocorrelation given in

106 MVM ' 1.1 · 1013 flop as a function of the dimensionless

quark mass parameter Mr = (r0mπ)
2.

The integrated autocorrelation of the pion coupling is even
shorter: τfπ

int < τmπ
int .
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Volume dependence

Autocorrelations on larger lattices:
Example: 164 lattices in the same points as some of the
83 · 16 lattices. The physical volume is large:
L ' 4 − 5 fm, L4 ' 400 − 500 fm4.

Table 1: Runs for comparing the simulations costs
given in numbers of floating point operations at
different volumes and lattice spacings.

label lattice β κ τ
plaq
int [flop]

(e) 83
· 16 4.76 0.190 4.59(37) · 1013

(e16) 164 4.76 0.190 7.5(1.3) · 1014

(h) 83
· 16 4.68 0.195 1.7(6) · 1014

(h16) 164 4.68 0.195 1.10(17) · 1015

(E16) 164 5.10 0.177 2.1(4) · 1014

The quark masses are, respectively:
mud ' 0.45 ms and mud ' 0.25ms.
The cost increase with lattice volume is close to the trivial
volume factor.
In case of the autocorrelation of the pion mass the observed
increase turns out to be even smaller.

Smaller lattice spacings: the run (E16) shows a favourable
behaviour, which is presumably due to the way the small
eigenvalues are dealt with (Mr ' 1.4 as for (e16)).
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qq+q

Eigelvalues of the fermion matrix: The effect of the quark
determinant suppresses the density of eigenvalues of the
quark matrix near zero.
The statistical weight of gauge configurations with negative
fermion determinant of a single quark flavour is negligible.
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Figure 3: Low-lying eigenvalues from a set of O(10) configurations

at β = 4.64 and κ = 0.197 on 83
· 16 lattice. The eigenvalues

are determined inside the closed curve and to the left of the vertical

line with the Arnoldi algorithm.
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Figure 1. Low-lying eigenvalues for a set of 10 configurations with exceptionally small eigenvalues, at
β = 4.68 and κ = 0.195 (left panel), β = 4.64 and κ = 0.197 (middle panel), detail (right panel).
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Chiral logs?

The behaviour of physical quantities, as for instance the
pseudoscalar meson (“pion”) mass mπ or pseudoscalar
decay constant fπ as a function of the quark mass are
characterized by the appearance of chiral logarithms.
These chiral logs, which are due to virtual pseudoscalar
meson loops, have a non-analytic behaviour near zero quark
mass of a generic form mq log mq.
They imply relatively fast changes of certain quantities near
zero quark mass which are not seen in previous data.

The one-loop ChPT formulas for m2
π:

Mr

2µr

= Br0 −
MrBr0

16π2(fr0)2
log

(Λ3r0)
2

Mr

+ O(M2
r )

and for fπ:

fπr0 = fr0 +
Mr

8π2fr0
log

(Λ4r0)
2

Mr

+ O(M2
r )

Notations: Mr ≡ (r0mπ)2 and µr ≡ mPCAC
q r0.

The fits with all points correspond to the parameters:
Br0 = 8.2, fr0 = 0.27, Λ3r0 = 3.5 in the formula for m2

π

and fr0 = 0.60, Λ4r0 = 4.3 in the formula for fπ.
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Valence quark mass dependence

PQChPT: (Sharpe-Shoresh, Rupak-Shoresh, ...)
Chiral logarithms also appear, for instance, in

RRf ≡
f2

V S

fV V fSS

= 1 +
χS

64π2
[ξ − 1 − log(ξ)] + · · ·

where
χS ≡

2B0mq

f2
0

, ξ ≡
mV q

mSq
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The PRELIMINARY value of the coefficient is close to the
expectation: χS = 10(2).
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Conclusion

• TSMB works fine for mud ≤ 1
5ms −

1
4ms.

• The qualitative behaviour of chiral logarithms can be
seen in the quark mass dependence of m2

π and fπ.

• The valence quark mass dependence also shows the chiral
logarithms with the expected coefficients.

• For the quantitative determination of the Gasser-
Leutwyler coefficients of ChPT one has to perform the
limits a → 0 and χS → 0.
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