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Topics

The quark-gluon mixed condensate                     in lattice QCD
–T.Doi et al., hep-lat/0212025.
–T.Doi et al., hep-lat/0211039.

The glueballs at finite temperature
–N.Ishii et al., Phys.Rev.D66,014507,(2002).
–N.Ishii et al., Phys.Rev.D66,094506,(2002).

The three quark potential
–T.T.Takahashi et al., Phys.Rev.Lett.86,18(2001).
–T.T.Takahashi et al., Phys.Rev.D65,114509(2002).

SU(3) lattice QCD studies of octet and decouplet baryon spectra
–Y.Nemoto et al., hep-lat/0204014.
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The quark-gluon mixed condensate

in lattice QCD
qGqg µνµνσs

Contents from

T.Doi, N.Ishii, M.Oka, H.Suganuma, hep-lat/0211039.
T.Doi, N.Ishii, M.Oka, H.Suganuma, hep-lat/0212025.



Backgrounds
The condensates can represents the non-perturbative feature 
of QCD vacuum.

the spontaneous breaking of chiral symmetry00 qq

the trace anomaly00 µν
µνGG

Further, the condensates can be used to calculate the hadronic
observables in the frame work of QCD sum rule.



QCD sum rule

The operator product expansion (OPE)
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Wilson coefficient
(perturbatively calculable)

condensates
vacuum expectation 
value of the normal 
ordered operators
(nonperturbative object)

• adopt some ansatz
• parameterize this with hadronic observables

fit the lhs.(OPE side) with the 
rhs.(phenomenological side) to obtain 
the hadronic observables.

The values of condensates 
have to be supplied as 
inputs in QCD sum rule

hadronic masses, couplings,etc.



QCD sum rules requires
fundamental parameters

values of condensates
)(,,,, µα ssdu mmm L

L,00    ,00,00 s qGqgGGqq µνµν
µν

µν σ

The standard values are determined by phenomenological analysis.

(For some condensates, Shifman et al. gave estimates from dilute instanton
gas approx.)
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The mixed condensate
plays important roles in various system in QCD sum rule.
– the nucleon-delta mass difference

– the light-heavy meson system
–
– etc.

is another chiral order parameter of the second lowest 
dimension.
represents a direct correlation between quarks and gluons.
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The determination of the mixed condensate
QCD sum rule itself

– V.M.Belyaev et al., Sov. Phys. JETP 
56, 493 (1982).
– L.J. Reinders et al., Phys. Lett B120, 
209 (1983).
– A.A. Ovchinnikov et al., Sov. J. Nucl. 
Phys. 48, 721 (1988). (Yad Fiz. 48, 1135 
(1988))
– S. Narison, Phys. Lett. B210, 238 
(1988).

Instanton liquid model
– M.V. Polyakov et al., Phys. Lett. B387, 
841 (1996).

etc.
lattice QCD calculation

There is only one lattice QCD calculation.
– M. Kremer et al., Phys. Lett. B194, 
283 (1987).

The lattice QCD calculation of the 
mixed condensate has been limited to 
this preliminary (but pioneering) work 
for 15 years !!

× KS-fermion (quenched)

× lattice

×

×1 point × 5 configs.

total number of data : 5

48

)fm19.0(7.5 == aβ

It is important to perform a new lattice QCD calculation of mixed 
condensate on a largerlarger and a finerfiner lattice with a better statisticsbetter statistics !



Determination of condensates within 
QCD sum rule framework

fundamental parameters

values of condensates
)(,,,, µα ssdu mmm L

L,00    ,00,00 s qGqgGGqq µνµν
µν

µν σ

The standard values are determined by phenomenological analysis.

(For some condensates, Shifman et al. gave estimates from dilute instanton
gas approx.)
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Lattice QCD calculation

•Gauge configuration by Wilson action
•Lattice spacing:
•Lattice size:

periodic BC for gluon
anti-periodic BC for quarks

•The pseudo-heat bath algorithm for the update of gauge configuration

•Kogut-Susskind fermion (quenched calculation)

0.6=β
GeV/fm) 89.0 (from fm 1.0 == σa
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It is important to respect the chiral symmetrychiral symmetry, since the mixed condensate
is another chiral order parameteranother chiral order parameter.               KS fermion is appropriate.

100 configs.number of gauge configs.

500 sweepsmeasurement interval

1000 sweepsthermalization

523621m [MeV]
0.02630.01840.0105ma

We use 16 space-time points from 
each gauge config.

total number of data = 1600

qGqg µνµνσs

Lattice Parameter Setup:
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Numerical results

Jackknife errors are hidden inside the symbols.

Jackknife errors are hidden inside the symbols.

Both the condensates behave linearly with 
the quark mass.

Linear chiral extrapolation.

Values in the chiral limit.
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Comparison with the standard value employed in QCD sum rule

Rescaling of the scale: rule sum QCD of scaleGeV1/ ≈≡⇒≈ µπµ a
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Comparing with the standard value, our calculation results in a rather large 
value.

Comments:
Instanton model has made a slightly larger estimate:
For improvement, the renomalization should be performed more carefully.

22
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Temperature dependence of the condensates ( Preliminary )

Comments:
Quenched level result
chiral limit by linear extrapolation

Below Tc, 
both condensates reduces by 
about only 3 % in the vicinity of 
Tc.

Above Tc,
both condensates almost vanish.
(They are chiral order parameters)



Checks on systematic uncertainties

The finite volume artifactThe finite volume artifact
is estimated by imposing a different boundary condition on quark fields.

The deviation is about 1 %.

The finite volume artifact is small.

The The discretizationdiscretization error oferror of

anti-periodic BS v.s. periodic BS

qGqg µνµνσs

– No O(a) error from the quark propagator after averaging over flavor space
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– No O(a) error from 

– An ambiguity from a particular choice of the gauge link to respect the 
gauge covariance:

( ))()()( 22lat aOTsGgasG aa
S += µνµν

To estimate the size of this ambiguity, we examine a different path.
The deviation is about 1 %.
The discretization error is small.



Summary & Discussion
Recalculation of the mixed condensate on a finer and larger lattice with higher 
statistics using KS-fermion at quenched level.

fm1.0at   valuebare:)14(005652.0s
5 =−= aqGqga µνµνσ

data1600configs100points16
lattice16,0.6 4

=×
=β

data5configs5points1
lattice8,7.5 4
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=β

Our calculation: Older calculation:

by M.Kremer et al., Phys.Lett.B194,283(1987)

We have rescaled our result to compare it with the standard QCD sum rule value by 
using the pertubative anormalous dimension.
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Further studies in progress:
Finite temperature.

Full QCD

Renormalization constants.
The large value suggests the importance  
of the mixed condensate in QCD sum rule.



The Glueballs at Finite Temperature

Contents from
N.Ishii, H.Suganuma, H.Matsufuru, Phys. Rev. D66, 014507 (2002)

N.Ishii, H.Suganuma, H.Matsufuru, Phys. Rev. D66, 094506 (2002)



Backgrounds

At finite temperature/density, QCD vacuum is 
expected to change its structure (even below Tc)

•The reduction of the confinement force, i.e., the string 
tension

•The partial restoration of the spontaneous chiral
symmetry breaking

•Changes of various vacuum condensates

ly.respective ,87.0,93.0
 tocorrespond 28,26

potential-

CC

t

TTT
N
qq
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from H.Matsufuru et al., “Proceedings of 
Quantum Chromodynamics and Color 
Confinement”, p.216.



• Hadrons are bound states of 
quarks and gluons.

Hadrons change their 
properties as a consequence 
of the change in the QCD 
vacuum. 

• The changes of the hadronic
properties at T>0 are 
expected to serve as 
important precritical
phenomena of the QCD 
phase transition.

• These changes are predicted 
by various QCD-motivated 
effective models.

– T.Hatsuda et al., PRL 55 (1985) 158.
– T.Hashimoto et al., PRL 57 (1986) 2123.
– T.Hatsuda et al., PRD 47 (1993) 1225.
– H.Ichie et al., PRD 52 (1995) 2944.

• These studies predict, in the  
vicinity of Tc, as a direct 
consequence of
– the reduction of the string 

tension
– the partial restoration of the 

spontaneous chiral symmetry 
breaking

the polemass shift of
– charmonium
– light      mesons
– glueball

qq



• Motivated by these results, anisotropic lattice QCD has 
been used to measure the polemass of various             
mesons at finite T (assuming the narrowness of the 
thermal width) at quenched level.
– QCD-TARO Collab., PRD 63 (2001) 054501.
– T.Umeda et al., Int.J.Mod.Phys. A16 (2001) 2215.

• showing (unfortuately) no significant change below Tc
• In this talk, we report the anisotropic lattice QCD 

studies of thermal glueball at finite T
– N.Ishii et al., PRD 66 (2002) 014507.
– N.Ishii et al., PRD 66 (2002) 094506.

qq



Glueballs
• The Glueballs are hadrons mainly consisting of gluons.
• Their existence is predicted by QCD:

– The non-Abelian nature of the gauge transformation group
– The self-interaction of the gluons suggests the existence of the glueballs

• There have been quite a lot of theoretical studies:
– MIT bag model

• T.Barnes et al., Nucl.Phys. B224 (1983) 241., etc.
– Constitutent gluon model

• D.Horn et al., Phys.Rev.D17 (1978) 898., etc.
– Flux tube model

• N.Isgur et al., Phys.Lett. B147 (1984) 169., etc.
– Instanton liquid model

• T.Schafer et al., Phys.Rev.Lett., 75 (1995) 1707.
– QCD sum rule

• M.Shifman, Z.Phys. C9 (1981) 347.
– Lattice QCD

• [quench] C.J.Morningstar et al., Phys.Rev. D66 (1999) 034509, J.Sexton et 
al., Phys.Rev.Lett. 75 (1995) 4563., etc.

• [full] A.Hart et al., Phys.Rev. D65 (2002) 034502., etc.

glueball



Glueball spectrum in quenched SU(3) lattice QCD

MeV 24002000)2(
MeV 17001500)0(
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• Except for minor variations, 
quenched SU(3) lattice QCD 
predicts

from C.J.Morningstar et al., 
Phys.Rev.D60 (1999) 034509.



Glueballs in experiment
• Glueballs are created in 

the glue-rich processes:

• Due to the mixing with 
quarkonium, it is hard to 
determine which meson 
is the true glueball.

• The glueball is required to 
satisfy the following 
properties:
– It is created by the glue-

rich process.
– It should be exotic meson.
– Its decay width should be 

narrower than the ordinary 
meson (from OZI rule)

– Flavor-blind decay
– It should not decay into two 

photon.
• The glueball candidates

)1710(  ,)1500( 00 ff

from K.Seth, Nucl.Phys.A675(2000)25c.

glueball qq



Mass reduction of glueball from effective theory
(from H.Ichie et al., Phys.Rev.D52 (1995) 2944.)
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Unitary gauge
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The thermal hadrons in lattice QCD
• Hadronic mass is obtained 

from the temporal correlation, 
i.e., the two-point correlator

• At high temperature, the 
temporal lattice size shrinks 
as 1/T, number of data 
decrease.

• It is difficult to mesure the 
polemass at high 
temperature.

• Due to this technical difficulty, 
the lattice studies of the 
thermal hadron mass had 
been restricted to the spatial 
correlations, i.e., the 
screening mass.

space

time

screening mass

polemass
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Anisotropic Lattice QCD
• Isotropic lattice • Anisotropic lattice

The technical difficulty can be resolved by the anisotropic lattice !

Only 3data are available for
mass measurement

11 data are available for
mass measurement

space space

tim
e

)( st aa =
)1,( 1 >= γγ st aa

Finer mesh along the      
temporal direction.

G(t) G(t)

t t1/T 1/T

case 4=γ



Glueball correlators and the spectral functions
The glueball correlator:
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We enhance the ground state contribution by improving the 
glueball operagtor. (with the smearing method)
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The smearing method cf) APE Collab., M.Albanese et al., Phys.Lett.B192,163(1987).

In the case of the glueball, the poor overlap problem is known to due to the difference:

the physical glueball size the “size” of the glueball operator

fm5.02.0 −≈r sar ≈

Improvement by systematically providing a spatial size to the glueball operator.
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The smearing dependence
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Narrow peak ansatz
If we assume the narrowness of the peak, the spectral function
can be approximated by introducing a temperature dependent
“polemass” m(T)

)(ωρ
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)(Tmω ω0ω

At  T>0, each peak acquires a thermal width through the 
interaction with the heat bath.

It is desirable to respect the presence of thermal width at T>0.



• What is the appropriate 
functional form ?
– With increasing T (>0), bound 

state poles of             are 
moving off the real       axis into 
complex      plane.

• The appropriate functiona
form is “Breit-Wigner type”.

)(ωRG
ω

ω

[ ]

22
0

0
0

0

00

)(
1                   

1Im1)(

h  with widtat  Lorentzian

)()(2         
))((Im2)(

Γ+−
Γ

=









Γ+−

≡−

Γ

++−−=
−=

Γ

ΓΓ

ωωπ

ωωπ
ωωδ

ω

ωωδωωδπ
ωωρ

i

A
GR

L

[ ]
[ ]

[ ])()(2           
2/sinh

)2/(cosh
2

)(

00 ωωδωωδπ
βω
βω

π
ω

+−−×

−
≡

ΓΓ

∞

∞−∫
A

tdtg

L+
Γ+−

=
i

AGR
0

)(
ωω

ω

ω

)(Re ω

)(Im ω

Γ+ i0at  poleComplex ω

fit parametersω,, ΓA

Ansatz with thermal width



What happens if the thermal width is broad ?
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The Numerical Result

• The Lattice Parameter Setup
– Gauge config by anisotropic Wilson action: 
– Lattice spacings are determined from the string tension:

– Lattice size: 
– number of gauge config: 5,000-9,900, (bin size: 100)
– For each T, we pick up gauge configs every 100 sweeps 

after skipping 20,000 sweeps for thermalization.
– An appropriate smearing is adopted to enhance the 

lowlying peak contribution.
– The critical temperature is determined

from the Polyakov loop susceptibility:
Tc = 280 MeV

4/ anisotropy lattice   fm 021.0  fm, 084.0 =⇒== tsts aaaa

)25.62( =≡ Clatt Nβ

MeV)130,,390    72,,24(203 LL =⇔=× TNN tt

MeV 440=σ



The glueball correlator at low temperature (T=130MeV)

fit range for Breit-Wigner Ansatz

fit range for Narrow-Peak Ansatz

[MeV] effmThe effective mass

The effective center eff;0ω The effective width effΓ

The both ansatz fit the lattice 
QCD data very well. 

It is natural, since the thermal 
width is still narrow at low 
temperature.



The effective mass, the effective center and the effective width

The effective massThe effective mass
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The glueball correlator at hight temperature (T=253MeV<Tc)

fit range of Narrow-Peak Ansatz

fit range of Breit-
Wigner Ansatz

[MeV] effmThe effective mass

The effective center The effective widtheff;0ω effΓ

The narrow-peak ansatz fails to 
fit the lattice QCD data around 
t=0.

The Breit-Wigner ansatz fits the 
lattice QCD data in the whole 
region rather well.



The smearing dependence (T<Tc)
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contributions from 
higher spectral 
components are 
suppressed.

contributions from 
higher spectral 
components are 
suppressed.
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The lowest peak contribution seems to be 
maximally enhanced in this region.



The glueball correlator above Tc (T=390 MeV)

The effective mass [MeV]effm

The effective center The effective widtheff;0ω effΓ



The smearing dependence (T>Tc)
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The low lying glueball peak(0++)

][GeV )0(/)( -1Gωρ

The thermal width is seen
to become broader with
increasing temperature.

[MeV] ω



[MeV] 0ω [MeV] Γ

The peak center The thermal width

The polemass from narrow 
peak ansatz

•The Breit-Wigner ansatz
− thermal width broadening near Tc

−modest reduction in peak center

•The narrow peak ansatz
−polemass reduction near Tc

MeV 300)( ≅Γ CT

MeV 1000 ≤∆ω

 MeV 300≅∆m
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Screening 
mass

Peak 
center

Thermal 
width

Polemass

qqlight 

qqheavy 

•QCD-TARO Collab. PRD 63 (2001) 054501.
•T.Umeda et al., Int.J.Mod.Phys. A16 (2001) 2215.
•E.Laermann et al., Eur.Phys.J. C20 (2001) 541.
•S.Datta et al., Nucl. Phys. B534 (1998) 392.

Ref)

Comparison with related lattice QCD results (quench)

In the confinement phase, the glueball is more sensitive 
to the thermal effects than the ordinary         mesons.qq

Narrow peak ansatz

○ significant
△ modest
× unchanged

Thermal width broadening

Modest reduction of peak center
MeV 300)( ≈Γ CT

MeV 1000 ≈∆ω

Polemass reduction

ω

ω

)(ωρ

)(ωρ

300MeV

SU(3) lattice QCD result of 
glueball correlator at T>0.

The Breit-Wigner ansatz
Summary & Discussion
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