4th ILFTN Workshop at Hayama, Mar. 8-11, 2006

Baryon semi-leptonic decay from lattice QCD with domain wall fermions

Shoichi Sasaki (RBRC/U. of Tokyo)

in collabration with Takeshi Yamazaki (RBRC)

The octet baryons (p,n, Λ , Σ , Ξ) admit various β -type decays.

 $B' \to B + l^{\pm} + \nu_l(\bar{\nu}_l)$

neutron beta decay

$$n \to p + e^- + \bar{\nu}_e$$

CVC (conserved vector current) hypothesis:

$$\langle p|V_{\mu}^{+} - A_{\mu}^{+}|n\rangle = 2\langle p|V_{\mu}^{3} - A_{\mu}^{3}|p\rangle$$

Weak matrix element Iso-vector nucleon matrix element

way to access the nucleon structure

The octet baryons (p,n,Λ,Σ,Ξ) admit various β -type decays.

 $B' \to B + l^{\pm} + \nu_l(\bar{\nu}_l)$

- hyperon beta decay
 - ✓ Alternative way to determine $|V_{\mu s}|$ other than K_{l3} decays

the weak mixing element (CKM) V_{us}

The octet baryons (p,n,Λ,Σ,Ξ) admit various β -type decays.

 $B' \to B + l^{\pm} + \nu_l(\bar{\nu}_l)$

- hyperon beta decay
 - ✓ Alternative way to determine $|V_{US}|$ other than K_{J3} decays ✓ Vital input to analysis of strange quark spin fraction $\Delta\Sigma(=\Delta u + \Delta d + \Delta s)_{Expt.} = 0.213 \pm 0.138$ $(g_A/g_V)_{np} = \Delta u - \Delta d$ $(g_A/g_V)_{\Delta p} = (2\Delta u - \Delta d - \Delta s)/3$ $(g_A/g_V)_{\Sigma\Sigma} = (\Delta u + \Delta d - 2\Delta s)/3$ $(g_A/g_V)_{\Sigma n} = \Delta d - \Delta s$ Assumption : SU(3) symmetry

The octet baryons (p,n, Λ , Σ , Ξ) admit various β -type decays.

 $B' \to B + l^{\pm} + \nu_l(\bar{\nu}_l)$

- hyperon beta decay
 - ✓ Alternative way to determine $|V_{\mu s}|$ other than K_{L3} decays
 - \checkmark Vital input to analysis of strange quark spin fraction

 $\Delta s = -0.124 \pm 0.046$

The hidden uncertainty of Δs coming from unknown SU(3) breaking in hyperon beta decays.

The octet baryons (p,n,Λ,Σ,Ξ) admit various β -type decays.

 $B' \to B + l^{\pm} + \nu_l(\bar{\nu}_l)$

- hyperon beta decay
 - ✓ Alternative way to determine $|V_{\mu s}|$ other than K_{L3} decays
 - ✓ *Vital input to analysis of strange quark spin fraction*

SU(3) breaking in hyperon beta decays

$$B' \to B + l^{\pm} + \nu_l(\bar{\nu}_l)$$

These decays are described by 6 form factors

$$\langle B|V_{\alpha} - A_{\alpha}|B'\rangle = \bar{u}_{B}(p)[f_{1}(q^{2})\gamma_{\alpha} + \frac{f_{2}(q^{2})}{2M_{B'}}\sigma_{\alpha\beta}q_{\beta} + \frac{f_{3}(q^{2})}{2M_{B'}}q_{\alpha} + g_{1}(q^{2})\gamma_{\alpha}\gamma_{5} + \frac{g_{2}(q^{2})}{2M_{B'}}\sigma_{\alpha\beta}\gamma_{5}q_{\beta} + \frac{g_{3}(q^{2})}{2M_{B'}}q_{\alpha}\gamma_{5}]u_{B'}(p')$$

Ist class: $f_1(q^2)$, $f_2(1^2)$, $g_1(q^2)$, $g_3(q^2)$ 2nd class: $f_3(q^2)$, $g_2(q^2)$

$$B' \to B + l^{\pm} + \nu_l(\bar{\nu}_l)$$

These decays are described by 6 form factors

$$\langle B|V_{\alpha} - A_{\alpha}|B'\rangle = \bar{u}_{B}(p)[f_{1}(q^{2})\gamma_{\alpha} + \frac{f_{2}(q^{2})}{2M_{B'}}\sigma_{\alpha\beta}q_{\beta} + \frac{f_{3}(q^{2})}{2M_{B'}}q_{\alpha} + g_{1}(q^{2})\gamma_{\alpha}\gamma_{5} + \frac{g_{2}(q^{2})}{2M_{B'}}\sigma_{\alpha\beta}\gamma_{5}q_{\beta} + \frac{g_{3}(q^{2})}{2M_{B'}}q_{\alpha}\gamma_{5}]u_{B'}(p')$$

Ist class: $f_1(q^2)$, $f_2(1^2)$, $g_1(q^2)$, $g_3(q^2)$ Sach's form factors $G_E(q^2) = f_1(q^2) + \frac{q^2}{2M_{B'}}f_2(q^2)$ $G_M(q^2) = f_1(q^2) + f_2(q^2)$

$$B' \to B + l^{\pm} + \nu_l(\bar{\nu}_l)$$

These decays are described by 6 form factors

$$\langle B|V_{\alpha} - A_{\alpha}|B'\rangle = \bar{u}_{B}(p)[f_{1}(q^{2})\gamma_{\alpha} + \frac{f_{2}(q^{2})}{2M_{B'}}\sigma_{\alpha\beta}q_{\beta} + \frac{f_{3}(q^{2})}{2M_{B'}}q_{\alpha} + g_{1}(q^{2})\gamma_{\alpha}\gamma_{5} + \frac{g_{2}(q^{2})}{2M_{B'}}\sigma_{\alpha\beta}\gamma_{5}q_{\beta} + \frac{g_{3}(q^{2})}{2M_{B'}}q_{\alpha}\gamma_{5}]u_{B'}(p')$$

Ist class: $f_1(q^2), f_2(1^2), g_1(q^2), g_3(q^2)$

 $g_V = \lim_{q^2 \to 0} f_1(q^2) \qquad g_A = \lim_{q^2 \to 0} g_1(q^2) \quad \text{forward limit}$

$$B' \to B + l^{\pm} + \nu_l(\bar{\nu}_l)$$

These decays are described by 6 form factors

$$\langle B|V_{\alpha} - A_{\alpha}|B'\rangle = \bar{u}_{B}(p)[f_{1}(q^{2})\gamma_{\alpha} + \frac{f_{2}(q^{2})}{2M_{B'}}\sigma_{\alpha\beta}q_{\beta} + \frac{f_{3}(q^{2})}{2M_{B'}}q_{\alpha} + g_{1}(q^{2})\gamma_{\alpha}\gamma_{5} + \frac{g_{2}(q^{2})}{2M_{B'}}\sigma_{\alpha\beta}\gamma_{5}q_{\beta} + \frac{g_{3}(q^{2})}{2M_{B'}}q_{\alpha}\gamma_{5}]u_{B'}(p')$$

2nd class: $f_3(q^2)$, $g_2(q^2)$

SU(3) limit (neutron beta decay) $f_3(q^2) = 0, g_2(q^2) = 0$

Contents

* Nucleon axial charge

Finite size effect $O(a^2)$ correction

Sasaki, Orginos, Ohta, Blum, Phys. Rev. D68 (03) 054509

* Nucleon form factors Finite size effect

✓ Nf=2 & Nf=0 DWF results (preliminary)

* Hyperon beta decay SU(3) breaking effect

✓ An exploratory study in quench (Nf=0) DWF calculation

Nucleon axial charge

Nucleon axial charge g_A

• Well measured quantity in experiment

Iso-symmetry gives rise to the relation

 $\langle p|V_{\mu}^{+} - A_{\mu}^{+}|n\rangle = 2\langle p|V_{\mu}^{3} - A_{\mu}^{3}|p\rangle$

from neutron beta decay; $g_A/g_V = 1.2670(35)$.

- The simplest nucleon matrix elements
 - lowest moment (no covariant derivative)
 - zero momentum transfer
 - no disconnected diagram

a benchmark calculation = a "gold plated" test

But . . .

$$n \rightarrow p + e^- + \bar{\nu}_e$$

 $g_A = \lim_{q^2 \rightarrow 0} g_1(q^2)$
 $\left(\frac{g_A}{g_V}\right)_{\text{expt.}} = 1.2670(30)$

long-standing problem

Lattice calculation of g_A (before 2002)

type	group	fermion	lattice	β	volume	configs	$m_{\pi}L$	g _A
quench	KEK ¹⁾	Wilson	16 ³ x20	5.7	(2.2 fm) ³	260	≥ 5.9	0.985(25)
	Kentuchy ²⁾	Wilson	16 ³ x24	6.0	(1.5 fm) ³	24	≥ 5.8	1.20(10)
	DESY ³⁾	Wilson	16 ³ x32	6.0	(1.5 fm) ³	1000	≥ 4.8	1.074(90)
	LHPC-SESAM 7)	Wilson	16 ³ x32	6.0	(1.5 fm) ³	200	≥ 4.8	1.129(98)
			16 ³ x32	6.0	(1.5 fm) ³	O(500)		
	QCDSF ⁴⁾	Wilson	24 ³ x48	6.2	(1.6 fm) ³	O(300)		<u>1.14(3)</u>
			32 ³ x48	6.4	(1.6 fm) ³	O(100)		
			16 ³ x32	6.0	(1.5 fm) ³	O(500)		
	QCDSF-UKQCD ⁵⁾	Clover	24 ³ x48	6.2	(1.6 fm) ³	O(300)		<u>1.135(34)</u>
			32 ³ x48	6.4	(1.6 fm) ³	O(100)		
full	LHPC-SESAM 7)	Wilson	16 ³ x32	5.5	(1.7 fm) ³	100	≥ 4.2	0.914(106)
	SESAM ⁶⁾	Wilson	16 ³ x32	5.6	(1.5 fm) ³	200	≥ 4.5	0.907(20)

- 1. M. Fukugita et al., Phys. Rev. Lett. 75 (1995) 2092.
- 2. K.F. Liu et al., Phys. Rev. D49 (1994) 4755.
- 3. M. Göckeler et al., Phys. Rev. D53 (1996) 2317.
- 4. S. Capitani et al., Nucl. Phys. B (Proc. Suppl.) 79 (1999) 548.
- 5. R. Horsley et al., Nucl. Phys. B (Proc. Suppl.) 94 (2001) 307.
- 6. S. Güsken et al., Phys. Rev. D59 (1999) 114502.
- 7. D. Dolgov et al., Phys. ReV.D66 (2002)034506.

Low value of g_A in lattice QCD

 Possible systematic errors ✓ Quenching $g_A^{Full} \leq g_A^{Quench}$ at a~0.1 fm ~ 5-10 % ✓ Finite lattice spacing ~ 5 % 7 $(g_A)_{at a \rightarrow 0} > (g_A)_{at a \sim 0.1 \text{ fm}}$ \checkmark Determination of Z_A $Z_A^{\text{Non-pert}} < Z_A^{\text{Pert}} (\text{Clover}) \sim 10\%$ ✓ Finite volume No estimation ?

Lattice calculation of g_A (before 2002)

type	group	fermion	lattice	β	volume	configs	$m_{\pi}L$	g _A
quench	KEK ¹⁾	Wilson	16 ³ x20	5.7	(2.2 fm) ³	260	≥ 5.9	0.985(25)
	Kentuchy ²⁾	Wilson	16 ³ x24	6.0	(1.5 fm) ³	24	≥ 5.8	1.20(10)
	DESY ³⁾	Wilson	16 ³ x32	6.0	(1.5 fm) ³	1000	≥4.8	1.074(90)
	LHPC-SESAM 7)	Wilson	16 ³ x32	6.0	(1.5 fm) ³	200	≥ 4.8	1.129(98)
			16 ³ x32	6.0	(1.5 fm) ³	O(500)		
	QCDSF ⁴⁾	Wilson	24 ³ x48	6.2	(1.6 fm) ³	O(300)		<u>1.14(3)</u>
			32 ³ x48	6.4	(1.6 fm) ³	O(100)		
			16 ³ x32	6.0	(1.5 fm) ³	O(500)		
	QCDSF-UKQCD ⁵⁾	Clover	24 ³ x48	6.2	(1.6 fm) ³	O(300)		<u>1.135(34)</u>
			32 ³ x48	6.4	(1.6 fm) ³	O(100)		
full	LHPC-SESAM 7)	Wilson	16 ³ x32	5.5	(1.7 fm) ³	100	≥ 4.2	0.914(106)
	SESAM ⁶⁾	Wilson	16 ³ x32	5.6	(1.5 fm) ³	200	≥ 4.5	0.907(20)

- 1. M. Fukugita et al., Phys. Rev. Lett. 75 (1995) 2092.
- 2. K.F. Liu et al., Phys. Rev. D49 (1994) 4755.
- 3. M. Göckeler et al., Phys. Rev. D53 (1996) 2317.
- 4. S. Capitani et al., Nucl. Phys. B (Proc. Suppl.) 79 (1999) 548.
- 5. R. Horsley et al., Nucl. Phys. B (Proc. Suppl.) 94 (2001) 307.
- 6. S. Güsken et al., Phys. Rev. D59 (1999) 114502.
- 7. D. Dolgov et al., Phys. ReV.D66 (2002)034506.

DWF calculation of g_A

- Big advantage in dealing with the axial symmetry
 - g_A are supposed to respect the axial WT identity
 - Empirically known as Goldberger-Treiman relation: $M_N g_A = f_\pi g_{\pi N}$
- ✓ Excellent chiral properties of DWF
 - * lighter pion mass
 - * Especially, a significant relation $Z_V = Z_A$ for local lattice currents

T. Blum et al, PRD66 (02) 014504

- up to $O(a^2)$

A ratio g_A^{latt} / g_V^{latt} directly yields the renormalized value of g_A

➡ Just require to calculate the ratio of three-point functions!

CVC hypothesis

• The vector weak current is the iso-spin rotation of the electromagnetic current, $j_{\mu}^{em} = \frac{2}{3}V_{\mu}^{u} - \frac{1}{3}V_{\mu}^{d} + \cdots$

$$\begin{split} [I_{+}, j_{\mu}^{\text{em}}] &= -\bar{d}\gamma_{\mu}u \\ \langle p|\bar{d}\gamma_{\mu}u|n\rangle &= -\langle p|[I_{+}, j_{\mu}^{\text{em}}]|n\rangle \\ &= \langle p|j_{\mu}^{\text{em}}|p\rangle - \langle n|j_{\mu}^{\text{em}}|n\rangle \end{split}$$

$$g_V = \lim_{q^2 \to 0} \langle p | \bar{d} \gamma_\mu u | n \rangle = \lim_{q^2 \to 0} \langle p | j_\mu^{\text{em}} | p \rangle = 1$$

way to calculate the renormalization factor $Z_V = g_V^{\rm ren}/g_V^{\rm lat} = 1/g_V^{\rm lat}$

CVC hypothesis (cont'd)

Further consideration of iso-spin symmetry provides

$$\lim_{q^2 \to 0} \langle p|j^{\rm em}_{\mu}|p\rangle = \lim_{q^2 \to 0} \langle p|V^d_{\mu}|p\rangle = \lim_{q^2 \to 0} \langle p|V^u_{\mu} - V^d_{\mu}|p\rangle = 1$$

in the continuum

• For the local lattice currents in the chiral limit,

$$\mathcal{V}^f_\mu = Z_V V^f_\mu + \mathcal{O}(a^2)$$

Three different determination of Z_V can expose an $O(a^2)$ lattice artifact.

• Nf0: DWF-DBW2 at β =0.87 (a⁻¹=1.3GeV) - 16³ x 32 x 16 with M₅=1.8

Sasaki-Orginos-Ohta-Blum, PRD68 (03) 054509

• Nf0: DWF-DBW2 at β =0.87 (a⁻¹=1.3GeV) - 16³ x 32 x 16 with M₅=1.8

Sasaki-Orginos-Ohta-Blum, PRD68 (03) 054509

• Nf0: DWF-DBW2 at β =0.87 (a⁻¹=1.3GeV) - 16³ x 32 x 16 with M₅=1.8

Sasaki-Orginos-Ohta-Blum, PRD68 (03) 054509

$$Z_V = \frac{1}{g_V^{\text{latt}}} \propto \frac{\langle N(t')\bar{N}(0)\rangle}{\langle N(t')V_4(t)\bar{N}(0)\rangle}$$

Violation of

$$\lim_{q^2 \to 0} \langle p | j^{\rm em}_{\mu} | p \rangle = \lim_{q^2 \to 0} \langle p | V^d_{\mu} | p \rangle = \lim_{q^2 \to 0} \langle p | V^u_{\mu} - V^d_{\mu} | p \rangle$$

implies an $O(a^2)$ lattice artifact

• Nf0: DWF-DBW2 at β =0.87 (a⁻¹=1.3GeV) - 16³ x 32 x 16 with M₅=1.8

Sasaki-Orginos-Ohta-Blum, PRD68 (03) 054509

• Nf0: DWF-DBW2 at β =0.87 (a⁻¹=1.3GeV) - 16³ x 32 x 16 with M₅=1.8

Sasaki-Orginos-Ohta-Blum, PRD68 (03) 054509

In the chiral limit

$$Z_V = 0.796(3)$$

 $Z_A = 0.7776(5)$

2-3 % systematic error stemming from determination of Z-factor mainly due to $O(a^2)$ corrections

Quench DWF calculation of g_A

Sasaki-Orginos-Ohta-Blum, PRD68 (03) 054509

- \checkmark the lightest pion mass, $M_{\pi} \sim 0.39~GeV$
- relatively large volume, V ~ (2.4 fm)³
- ✓ large statistics, 416 configs
- * mild quark mass dependence
- Linear extrapolation yields

 $g_A = 1.212 (27)$

Quench DWF calculation of g_A

Sasaki-Orginos-Ohta-Blum, PRD68 (03) 054509

- \checkmark the lightest pion mass, $M_{\pi} \sim 0.39$ GeV
- ✓ relatively large volume, ∨ ~ (2.4 fm)³
- Iarge statistics, 416 configs
- * mild quark mass dependence
- * clear finite volume dependence
 - a 20 % increase from 1.2 fm to 2.4 fm

resolve the long-standing problem!

- Nf2: DWF-DBW2 at beta= $0.80 (a^{-1}=1.7 \text{GeV})$
 - 16³x32x12 (L=1.9 fm): O(5000) MC trajectories
 - $m_{sea}=0.02, 0.03, 0.04 (M_{\pi}=0.49, 0.61, 0.70 \text{ GeV})$
 - m_{res}=0.00137(5)
 - f_π= I 34.0(42), f_K=I 57.4(38) MeV
 - $B_{K}\overline{MS}(2 \text{ GeV})=0.495(18)$

RBC collaboration, Phys. Rev. D72, 114505 (05)

- Nf2: DWF-DBW2 at beta=0.80 (a⁻¹=1.7GeV)
 - 16³x32x12 (L=1.9 fm): 220 statistics
 - m_{sea}=0.03, 0.04
 - m_{sea}=0.02 (underway)
 - Nucleon structure function

Blum, Lin, Ohta, Orginos, Sasaki

Nf=2 DWF calculation of g_A

Nucleon form factors

Neutron beta decay $n \rightarrow p + e^- + \overline{\nu}_e$

 $\langle B|V_{\alpha} - A_{\alpha}|B'\rangle = \bar{u}_B(p)[f_1(q^2)\gamma_{\alpha} + \frac{f_2(q^2)}{2M_B}\sigma_{\alpha\beta}q_{\beta} + g_1(q^2)\gamma_{\alpha}\gamma_5 + \frac{g_3(q^2)}{2M_B}q_{\alpha}\gamma_5]u_{B'}(p')$

Under CVC hypothesis (rigid isospin symmetry)

- $\checkmark \quad f_3(q^2) = 0 \qquad \qquad g_2(q^2) = 0$
- $\checkmark \quad \langle p|V_{\mu}^{+} A_{\mu}^{+}|n\rangle = 2\langle p|V_{\mu}^{3} A_{\mu}^{3}|p\rangle$

weak matrix element isovector nucleon matrix element

- Nf2: DWF-DBW2 at beta=0.80 (a⁻¹=1.7GeV)
 - |6³x32x|2 (L=1.9 fm): 220 statistics
 - $m_{sea}=0.03, 0.04 (M_{\pi}=0.61, 0.70 \text{ GeV})$

Vector (Dirac form factor; $f_1=g_V$)

Vector (Dirac form factor; $f_1=g_V$)

Axial-vector $(g_1=g_A)$

 $\langle r_A^2 \rangle = \frac{12}{M_A^2}$

Axial-vector $(g_1=g_A)$

 $\overline{M^2}$

No sea-quark mass dependence!

- Nf0: DWF-DBW2 at beta= $0.87 (a^{-1}=1.3 \text{GeV})$
 - |6³x32x|6 (L=2.4 fm): ||9 statistics
 - m_f=0.04, 0.05, 0.06, 0.08 (M_π=0.53 0.78 GeV)

Axial-vector $(g_1=g_A)$

No quark mass dependence!

- Nf0: DWF-DBW2 at beta= $0.87 (a^{-1}=1.3 \text{GeV})$
 - |2³x32x|6 (L=1.8 fm): 400 statistics

Finite volume effect on g_A an g_V Nf0: DWF-DBW2 at beta=0.87 (a⁻¹=1.3GeV)

- Large finite volume effect on nucleon axial charge
- * less volume dependence for nucleon vector charge

$$g_A^{\text{lat}} = \frac{\langle N(t')A_3(t)\overline{N}(0)\rangle}{\langle N(t')\overline{N}(0)\rangle}$$
$$g_V^{\text{lat}} = \frac{\langle N(t')V_4(t)\overline{N}(0)\rangle}{\langle N(t')\overline{N}(0)\rangle}$$

Vector

Finite volume effect is observed!

Vector

Hyperon beta decay

- According to DWF study of neutron beta decay
 - ✓ Better control of determination of Z factor, thanks to excellent chiral properties of DWF
 - ✓ g_A/g_V in neutron beta decay is well reproduced within about 5 % accuracy even in quenched calculation
 - ✓ The lightest baryon (nucleon) seems to be fitted in
 2.4 fm lattice size (quench)

In the next stage, we explore the hyperon beta decay in lattice QCD

Hyperon Beta Decay (Expt.)

$B' \to B l \nu$	$f_1^{SU(3)}$	$g_1/f_1 \ (\text{Exp.})$	$(g_1/f_1)^{SU(3)}$
$n \to p$	1	1.2670 ± 0.0030	F + D
$\Lambda \to p$	$-\frac{\sqrt{6}}{2}$	0.718 ± 0.015	$F + \frac{1}{3}D$
$\Xi^- \to \Lambda$	$\frac{\sqrt{6}}{2}$	0.25 ± 0.05	$F - \frac{1}{3}D$
$\Sigma^{-} \rightarrow n$	-1	-0.340 ± 0.017	F - D
$\Xi^0 \to \Sigma^+$	1	1.32 ± 0.21	F+D
$\Xi^- \to \Xi^0$	-1	N/A	F-D
			1 c (2) 1

 $g_V = \lim_{q^2 \to 0} f_1(q^2)$ $g_A = \lim_{q^2 \to 0} g_1(q^2)$

Hyperon Beta Decay (Expt.)

 $g_V = \lim_{q^2 \to 0} f_1(q^2)$ $g_A = \lim_{q^2 \to 0} g_1(q^2)$

 $\Xi^{0} \rightarrow \Sigma^{+}$ is the direct analogue of $n \rightarrow p$ under $d \leftrightarrow s$ $\Xi^{-} \rightarrow \Xi^{0}$ is the direct analogue of $\Sigma^{-} \rightarrow n$ under $d \leftrightarrow s$

Hyperon Beta Decay ($\Xi^0 \rightarrow \Sigma^+$)

 $\Xi^{0} \rightarrow \Sigma^{+}$ is the direct analogue of $n \rightarrow p$ under $d \leftrightarrow s$

highly sensitive to SU(3) breaking

Center of mass correction approach (Ratcliffe)

 $(g_A/g_V)_{np} > (g_A/g_V)_{\Xi\Sigma}$ 8-10%

I/N_c expansion approach (Flores-Mendieta-Jenkins-Manohar)

 $(g_A/g_V)_{np} > (g_A/g_V)_{\Xi\Sigma}$ 20-30%

Summary on $\Xi^0 \rightarrow \Sigma^+$ (exp.)

- First and Single experiment at KTeV@FNAL
 - $g_1 / f_1 = 1.17 \pm 0.28(stat) \pm 0.05(syst)$
 - $g_2 / f_1 = -1.7 \pm 2.0(stat) \pm 0.5$ (syst)
 - \rightarrow no evidence for a nonzero value of the g₂ form factor (2nd-class)
- ✓ Assumming $g_2 / f_1 = 0$ $n \to p: g_1 / f_1 = 1.2670(35)$
 - $g_1 / f_1 = 1.32 \pm 0.21$ (stat) ± 0.05 (syst)
 - \rightarrow no indication of flavor SU(3) breaking effects

2nd-class current

$$\langle B|V_{\alpha} - A_{\alpha}|B'\rangle = \bar{u}_{B}(p)[f_{1}(q^{2})\gamma_{\alpha} + \frac{f_{2}(q^{2})}{2M_{B'}}\sigma_{\alpha\beta}q_{\beta} + \frac{f_{3}(q^{2})}{2M_{B'}}q_{\alpha} + \frac{g_{1}(q^{2})\gamma_{\alpha}\gamma_{5}}{2} + \frac{g_{2}(q^{2})}{2M_{B'}}\sigma_{\alpha\beta}\gamma_{5}q_{\beta} + \frac{g_{3}(q^{2})}{2M_{B'}}q_{\alpha}\gamma_{5}]u_{B'}(p')$$

- •Time reversal invariance requires all 6 form factors to be real
- •With respect to transformation under (extended) G-parity,

Ist class $Gf_{1,2}(Q^2)G^{-1} = +f_{1,2}(Q^2)$ $Gg_{1,3}(Q^2)G^{-1} = -g_{1,3}(Q^2)$ 2nd class $Gf_3(Q^2)G^{-1} = -f_3(Q^2)$ $Gg_2(Q^2)G^{-1} = +g_2(Q^2)$ • (extended) G-parity invariance requires $G = Ce^{-i\pi T_{2,5,7}}$ $f_3(Q^2) = 0$ $g_2(Q^2) = 0$

2nd-class current

$$\langle B|V_{\alpha} - A_{\alpha}|B'\rangle = \bar{u}_{B}(p)[f_{1}(q^{2})\gamma_{\alpha} + \frac{f_{2}(q^{2})}{2M_{B'}}\sigma_{\alpha\beta}q_{\beta} + \frac{f_{3}(q^{2})}{2M_{B'}}q_{\alpha} + g_{1}(q^{2})\gamma_{\alpha}\gamma_{5} + \frac{g_{2}(q^{2})}{2M_{B'}}\sigma_{\alpha\beta}\gamma_{5}q_{\beta} + \frac{g_{3}(q^{2})}{2M_{B'}}q_{\alpha}\gamma_{5}]u_{B'}(p')$$

- •Time reversal invariance requires all 6 form factors to be real
- •With respect to transformation under (extended) G-parity,

Ist class $Gf_{1,2}(Q^2)G^{-1} = +f_{1,2}(Q^2)$ $Gg_{1,3}(Q^2)G^{-1} = -g_{1,3}(Q^2)$ 2nd class $Gf_3(Q^2)G^{-1} = -f_3(Q^2)$ $Gg_2(Q^2)G^{-1} = +g_2(Q^2)$ •(extended) G parity invariance requires $G = Ce^{-i\pi T_{2,5,7}}$ SU(3) breaking $f_3(Q^2) \neq 0$ $g_2(Q^2) \neq 0$

An exploratory study

★ Extract the 2nd-class form factors (g₂ and f₃)
 ✓ SU(3) breaking = existence of non-zero g₂ and f₃
 ★ Quantify the SU(3) breaking effect on g₁ / f₁
 ✓ double ratio:

 $\frac{\langle \Sigma(t')A_3(t)\overline{\Xi}(0)\rangle}{\langle \Sigma(t')V_4(t)\overline{\Xi}(0)\rangle} \frac{\langle N(t')V_4(t)\overline{N}(0)\rangle}{\langle N(t')A_3(t)\overline{N}(0)\rangle} = \frac{g_1(q_{\max}^2)}{f_1(q_{\max}^2) - \delta f_3(q_{\max}^2)} \left(\frac{f_1(0)}{g_1(0)}\right)_{\mathrm{SU}(3)} \approx \left(\frac{g_1(0)}{f_1(0)}\right) \left(\frac{f_1(0)}{g_1(0)}\right)_{\mathrm{SU}(3)}$ $\delta = \frac{M_{\Xi} - M_{\Sigma}}{M_{\Xi} + M_{\Sigma}} \quad q_{\max}^2 = -(M_{\Xi} - M_{\Sigma})^2$

- Nf0: DWF-DBW2 at beta= $0.87 (a^{-1}=1.3 \text{GeV})$
 - |6³x32x|6 (L=2.4 fm): ||9 statistics
 - m_l=0.04, 0.05, 0.06 (M_π=0.53, 0.60, 0.65 GeV)
 - fixed strange quark mass at m_s=0.08

2nd-class form factors

m_l=0.05, m_s=0.08

$$\left|\frac{g_2(0.25 \text{ GeV}^2)}{f_1(0.25 \text{ GeV}^2)}\right| = 0.24(18)$$

$$\left| \frac{f_3(0.25 \text{ GeV}^2)}{f_1(0.25 \text{ GeV}^2)} \right| = 0.25(8)$$

2nd-class form factors

m_l=0.05, m_s=0.08

$$\left|\frac{g_2(0.25 \text{ GeV}^2)}{f_1(0.25 \text{ GeV}^2)}\right| = 0.24(18)(13)$$

 $\left| \frac{f_3(0.25 \text{ GeV}^2)}{f_1(0.25 \text{ GeV}^2)} \right| = 0.25(8)(13)$

2nd-class form factors

- ✓ Preliminary result (quenched lattice QCD)
 - at $\delta = 0.014(1)$ (m_l=0.05, m_s=0.08)

$$\left|\frac{g_2(0.25 \text{ GeV}^2)}{f_1(0.25 \text{ GeV}^2)}\right| = 0.24 \pm 0.18 \pm 0.13$$

- * KTeV@FNAL
 - δ=0.05 (phys.)

$$\left|\frac{g_2(0)}{f_1(0)}\right| = 1.7 \pm 2.0 \pm 0.5$$

Other form factors

m_l=0.05, m_s=0.08

Other form factors

 $m_1=0.05, m_s=0.08$

the SU(3) breaking effect on g_1 / f_1

• Consider the following double ratio at the rest frame (p,k=0)

$$\frac{\langle \Sigma(t')A_3(t)\overline{\Xi}(0)\rangle}{\langle \Sigma(t')V_4(t)\overline{\Xi}(0)\rangle}\frac{\langle N(t')V_4(t)\overline{N}(0)\rangle}{\langle N(t')A_3(t)\overline{N}(0)\rangle} = \frac{g_1(q_{\max}^2)}{f_1(q_{\max}^2) - \delta f_3(q_{\max}^2)} \left(\frac{f_1(0)}{g_1(0)}\right)_{SU(3)}$$

$$= \left(\frac{g_1(0)}{f_1(0)}\right) \left(\frac{f_1(0)}{g_1(0)}\right)_{\mathrm{SU}(3)} + \mathcal{O}(\delta^2)$$

where
$$\delta = \frac{M_{\Xi} - M_{\Sigma}}{M_{\Xi} + M_{\Sigma}}$$
 $q_{\max}^2 = -(M_{\Xi} - M_{\Sigma})^2$

Summary/Outlook

- * The computation of weak matrix elements in lattice QCD is now progressing with steadily increasing accuracy by utilizing domain wall fermions (DWF).
 - DWF has a big advantage in dealing with the axial symmetry
 - It is easy to determine Z-factors for V(A) local currents
- ✓ Neutron beta decay corresponds to a "gold plated" test
 - •The axial-vector channel significantly suffers from <u>the finite volume</u> <u>effect</u>, while it is hardly observed in the vector channel.

Summary/Outlook

- * The computation of weak matrix elements in lattice QCD is now progressing with steadily increasing accuracy by utilizing domain wall fermions (DWF).
 - DWF has a big advantage in dealing with the axial symmetry
 - It is easy to determine Z-factors for V(A) local currents
- ✓ Neutron beta decay corresponds to a "gold plated" test
- ✓ There is a challenging issue to explore the SU(3) breaking effect in hyperon beta decay through a first principles calculation.
- ➡ Our exploratory study in quenched DWF calculation:
 - Succeeded in evaluating 2nd-class form factors from lattice QCD
 - Observed the SU(3) breaking effect with higher accuracy than expt.

Generating 2+1 flavor DWF configurations

QCDOC with RBRC & BNL Lattice theorists

Large scale production run

- DWF + Iwasaki gauge action
- Lattice cutoff: $a^{-1} \sim 1.7 \text{ GeV}$ ($\beta = 2.13, c_1 = -0.331$)
- Box size: V=24³ x 64 x 16

L ~ 2.8 fm

• m_{light} = 3/4, 1/2, 1/4 of m_{strange}

 $M_{\pi} \sim 350, 500, 750 \text{ MeV}$

in collaboration with Columbia, UKQCD

Summary/Outlook

- * The computation of weak matrix elements in lattice QCD is now progressing with steadily increasing accuracy by utilizing domain wall fermions (DWF).
 - DWF has a big advantage in dealing with the axial symmetry
 - It is easy to determine Z-factors for V(A) local currents
- ✓ Neutron beta decay corresponds to a "gold plated" test
- ✓ There is a challenging issue to explore the SU(3) breaking effect in hyperon beta decay through a first principles calculation.

Future:

2+1 flavors DWF calculation (RBC+UKQCD) is promissing for theoretical research on the SU(3) breaking effect in baryon semi-leptonic decays.