*K*_{/3} semileptonic form factor with two-flavors of domain-wall quarks

T. Kaneko 1,2 for the RBC Collaboration

¹High Energy Accelerator Research Organization (KEK)

²Graduate University for Advanced Studies

4th ILFTN Workshop, March 8-11, 2006

・ 同 ト ・ ヨ ト ・ ヨ ト

outline

outline

- introduction
 - motivation : determination of $|V_{us}|$
 - K_{l3} decays
 - previous studies
- simulation method
- extraction of form factor

• kaon ME w/ $\mathbf{p} = 0 \Rightarrow f_0(q_{\max}^2; m_{ud}, m_s)$

• q^2 interpolation

• $f_0(q_{\max}^2; m_{ud}, m_s) \Rightarrow f_0(0; m_{ud}, m_s) = f_+(0; m_{ud}, m_s)$

chiral extrapolation

• $f_+(0; m_{ud}, m_s) \Rightarrow f_+(0; m_{ud, \text{phys}}, m_{s, \text{phys}})$

• $|V_{us}|$

・ロト ・ 同ト ・ ヨト ・ ヨト

-

1. introduction

- determination of $\left|V_{us}\right|$
- K_{l3} decays
- previous studies

イロト 不得下 イヨト イヨト

э

• CKM unitarity in 1st row, PDG 2004

$$\begin{split} |V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 &= 1 - \delta \\ |V_{ud}| &= 0.9738(5) & \Leftarrow \text{ nuclear } \beta \text{ decays} \\ |V_{us}| &= 0.2200(26) & \Leftarrow K_{l3} \text{ decays} \\ |V_{ub}| &= (3.67 \pm 0.47) \times 10^{-3} & \Leftarrow B \text{ meson decays} \\ \delta &= 0.0033(15) \end{split}$$

- $|V_{ub}|$ can be ignored
- uncertainty in δ : ~50% from $|V_{ud}|$; ~50% from $|V_{us}|$ improved accuracy of $|V_{ud}|$ and $|V_{us}| \Rightarrow$ more accurate δ
- ullet ~ 1% accuracy of $|V_{us}|$ is needed

ヘロト ヘアト ヘビト ヘビト

ъ

- toward...
 - precise test of unitarity (δ)
 - λ in Wolfenstein parameterization
- can be determined from several processes:
 - K₁₃ decays: 0.2200(26), PDG 2004
 - hyperon decay: 0.2250(27), Cabibbo et al., 2003
 - $K_{\mu 2}$ and $\pi_{\mu 2}$ decays + lattice f_K/f_π : 0.2238(30), Marciano, 2004
 - hadronic τ decays + QCD sum rule: 0.2208(34), Gámiz et al., 2004

イロト イポト イヨト イヨト

э.

• K_{l3} decays: semileptonic decays of kaon

$$K^0_{l3}: \ K^0 \to \pi^- l^+ \nu_l, \quad \ K^+_{l3}: \ K^+ \to \pi^0 l^+ \nu_l, \quad \ (l=e,\mu)$$

 $(K_{l3}^0 \text{ with } m_u = m_d \text{ in the following})$

decay rate:

$$\Gamma = \frac{G_F^2}{192\pi^3} M_K^5 C^2 I |V_{us}|^2 |f_+(0)|^2 S_{\text{ew}}(1+\delta_{\text{em}})$$

I = phase space integral

 $S_{\mathrm{ew}}\left(1+\delta_{\mathrm{em}}\right)=$ raddiative corrections

 $f_+(0) =$ vector form factor $(q^2 = 0)$

C =Clebsh-Gordon coefficient $\Rightarrow f_+(0) = 1$ in SU(3) limit

ヘロト 人間 とくほとく ほとう

3

form factor

•
$$f_{+}(q^{2})$$
 and $f_{-}(q^{2})$
 $\langle \pi(p') | \bar{s} \gamma_{\mu} u | K(p) \rangle = (p + p')_{\mu} f_{+}(q^{2}) + (p - p')_{\mu} f_{-}(q^{2})$
 $q = p - p'$
 $f_{+}(q^{2}) = f_{+}(0) (1 + \lambda_{+} q^{2} + \lambda' q^{4}), \quad \lambda_{+} = 0.028(1) M_{\pi}^{2} PDG, 2004$
 $f_{-}(q^{2}) = f_{-}(0) (1 + \lambda_{-} q^{2}) \quad \lambda_{-} =?$

• scalar form factor $f_0(q^2)$, $\xi(q^2)$

$$f_{0}(q^{2}) = f_{+}(q^{2}) + \frac{q^{2}}{M_{K}^{2} - M_{\pi}^{2}} f_{-}(q^{2}), \quad \xi(q^{2}) = \frac{f_{-}(q^{2})}{f_{+}(q^{2})}$$
$$\langle \pi(0) | V_{0} | K(0) \rangle = (M_{K} + M_{\pi}) f_{0}(q_{\max}^{2}), \quad q_{\max} = (M_{K} - M_{\pi})$$
$$f_{0}(0) = f_{+}(0)$$

introduction

K_{l3} decays previous studies

phase space integral, raddiative correction

phase space integral

$$\begin{split} I &= \frac{1}{M_K^8} \int d(q^2) \, \lambda^{3/2} \left(1 + \frac{M_l^2}{2q^2} \right) \left(1 - \frac{M_l^2}{q^2} \right)^2 \\ &\times \left\{ \frac{f_+(q^2)^2}{f_+(0)^2} + \frac{3M_l^2(M_K^2 - M_\pi^2)^2}{(2q^2 + M_l^2)\lambda} \frac{f_0(q^2)^2}{f_0(0)^2} \right\}, \\ \lambda &= q^4 + M_K^4 + M_\pi^4 - 2q^2M_K^2 - 2q^2M_\pi^2 - 2M_K^2M_\pi^2 \end{split}$$

 $K_{e3}: I = 0.156 \pm 0.53 \Delta \lambda_+$

1st term: $\Delta \lambda_+ \sim 3 \ \% \Rightarrow \Delta I \sim 0.2 \ \%$ 2nd term: can be neglected for K_{e3}

• radiative correction $S_{\rm ew} \left(1 + \delta_{\rm em}\right)$

 $S_{\rm ew} = 1.0232, \quad \delta_{\rm em} \lesssim 0.5\%$

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

introduction K_{l3} determination of $|V_{u,s}|$ previous studies

$|V_{us}|$ from K_{l3} decays

decay rate:

$$\Gamma = \frac{G_F^2}{192\pi^3} M_K^5 C^2 I |V_{us}|^2 |f_+(0)|^2 S_{\text{ew}}(1+\delta_{\text{em}}),$$

 $\left. \begin{array}{l} \Gamma \text{ from experiment} \\ f_{+}(0) \text{ from theory} \end{array} \right\} \ \Rightarrow \ \text{precise determination of } |V_{us}| \end{array}$

1% accuracy for unitarity test!

イロト イポト イヨト イヨト

PDG 2004:
$$\delta = 0.0033(15) \Rightarrow$$
 unitarity violation ?

T. Kaneko K₁₃ semileptonic form factor w/ two flavors of DW quarks

• ChPT expansion of $f_+(0)$

$$f_+(0) = 1 + f_2 + f_4 + \cdots, \quad f_n = O(M_{K,\pi}^n)$$

• f_2 ChPT: -0.023 (Gasser-Leutwyler, 1985)

• *f*₄

 $\begin{array}{l} {\sf ChPT} \ni {\sf LECs \ in \ } O(p^6) \ {\sf chiral \ Lagrangian} \\ {\it (Bijnens \ et \ al., \ 1998; \ Post-Schilcher, \ 2002)} \end{array}$

quark model : -0.016(8) (Leutwyler-Roos, 1984) \Rightarrow used in previous estimates of $|V_{us}|$

NP calculation is desirable \Rightarrow lattice QCD simulation

イロト イ押ト イヨト イヨト

• Bećirević et al., 2004: first lattice calc.

 $N_f = 0$, plaq. + NP clover $L \sim 2.0$ fm, $a^{-1} \sim 2.7$ GeV, $m_q \sim m_s/2 - m_s$ $f_+(0) = 0.960(5)(7)$

• JLQCD, 2005 $N_f = 2$, plaq. + NP clover $L \sim 1.8$ fm, $a^{-1} \sim 2.2$ GeV, $m_q \sim m_s/2 - m_s$ $f_+(0) = 0.952(6)$

• Fermilab-MILC-HPQCD, 2004

 $N_f = 2 + 1$, impr.gauge + Asqtad (impr.Wilson for val. *d*-quark) $L \sim 2.6$ fm, $a^{-1} \sim 1.6$ GeV, $m_q \sim 2m_s/5 - m_s$ use exp. λ_0 $f_+(0) = 0.962(6)(9)$

advantages simulation method

2. simulation method

くロン 人間 とくほとく ほとう

э

calculation w/ domain-wall quarks

• chiral symmetry at $a \neq 0$

 \Rightarrow do not need W χ PT/S χ PT

 \Leftrightarrow ChPT formula of f_2 at a = 0 has been used

• automatically *O*(*a*)-improved

 \Rightarrow do not need NP tuning of " c_V " factors for V_{μ}

small scaling violation

cf. B_k by CP-PACS 2001, RBC 2005

イロト イポト イヨト イヨト

advantages simulation method

gauge ensembles

- $N_f = 2$
- DBW2 glue + (standard) domain-wall quarks
- $\beta = 0.80 \Rightarrow a^{-1} = 1.69(5) \text{ GeV}$
- $16^3 \times 32 \Rightarrow L = 1.86(6)$ fm
- $N_s = 12 \Rightarrow m_{q, \rm res} \sim {\rm a \ few \ MeV}$
- 3 sea quark masses : $m_{s,{
 m phys}}/2 \lesssim m_{ud,{
 m sea}} \lesssim m_{s,{
 m phys}}$
- 4700 trajectories (94 measurements)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

measurements

- $m_{ud,val} = m_{ud,sea}$
- 3 strange quark masses $\in [m_{s, \text{phys}}/2, (5/4) m_{s, \text{phys}}]$
- source opr. : exp. smeared (t=4), sink opr. : local sink (t=28) + sequential source method
- boundary condition : (periodic+anti-periodic)/2
- $|\mathbf{p}| = 0, 1, \sqrt{2}$ and $\sqrt{3}$
- QCDOC : 1 rack (0.8TFLOPS) × 24 days

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

double ratio method $f_0(q_{\max}^2)$

3. form factor

double ratio method
f₀(q²_{max})

・ロト ・聞 と ・ ヨ と ・ ヨ と ・

3

double ratio method $f_0(q_{\max}^2)$

double ratio method

Hashimoto et al., 2000: proposed for B meson decays

$$C_{\mu}^{K\pi}(t,t') = \sum_{\mathbf{x},\mathbf{x}'} \left\langle O_{\pi}(\mathbf{x}',t') V_{\mu}(\mathbf{x},t) O_{K}^{\dagger}(\mathbf{0},0) \right\rangle$$

$$\rightarrow \frac{\sqrt{Z_{K,\mathrm{src}} Z_{\pi,\mathrm{snk}}}}{4 M_{K} M_{\pi} Z_{V}} \left\langle \pi | V_{\mu}^{(\mathrm{R})} | K \right\rangle e^{-M_{K} t - M_{\pi} (t'-t)}$$

$$R(t,t') = \frac{C_{4}^{K\pi}(t,t') C_{4}^{\pi K}(t,t')}{C_{4}^{KK}(t,t') C_{4}^{\pi \pi}(t,t')} = \frac{\langle \pi | V_{4}^{(\mathrm{R})} | K \rangle \langle K | V_{4}^{(\mathrm{R})} | \pi \rangle}{\langle K | V_{4}^{(\mathrm{R})} | K \rangle \langle \pi | V_{4}^{(\mathrm{R})} | \pi \rangle}$$

$$\rightarrow \frac{(M_{K} + M_{\pi})^{2}}{4 M_{K} M_{M}} | f_{0}(q_{\mathrm{max}}^{2}) |^{2}, \quad q_{\mathrm{max}} = M_{K} - M_{\pi}$$

various uncertainties cancels (at least partially) in this ratio renorm. factor, $\exp[-mt]$ factor, statistical fuctuation,...

 $4M_{\kappa}M_{\pi}$

프 🖌 🛪 프 🛌

3

form factor

double ratio method $f_0(q_{\rm max}^2)$

double ratio method

• at each jackknife sample

form factor

double ratio metho $f_0(q_{\max}^2)$

$f_0(q_{\rm max}^2)$ at simulated quark masses

T. Kaneko K₁₃ semileptonic form factor w/ two flavors of DW quarks

double ratio method $f_0(q^2_{\max})$

remaining steps

• double ratio method $\Rightarrow f_0(q_{\text{max}}^2)$ w/ accuracy of 0.1% (already seen in *Bećirević et al.,...*)

•
$$\sqrt{\Gamma} \propto |V_{us}| |f_+(0)| = |V_{us}| |f_0(0)|$$

remaining steps:

1) interpolation to $q^2 = 0$ at each quark mass $f_0(q_{\max}^2; m_{ud}, m_s) \Rightarrow f_0(0; m_{ud}, m_s)$ 2) chiral extrapolation $f_0(0; m_{ud}, m_s) \rightarrow f_0(0; m_{ud \text{ phys}}, m_{s \text{ phys}})$

how large systematic error from these steps?

4. q^2 interpolation

• ratio to study q^2 dependence

•
$$\xi(q^2)$$

・ 同 ト ・ ヨ ト ・ ヨ ト

 q^2 interpolation

ratio for q^2 dependence $\xi(q^2)$ q^2 interpolation

ratio for q^2 dependence

matrix elements w/ $|\mathbf{p}|^2 = 1, 2, 3 \Rightarrow q^2$ dependence of form factor

$$C^{K\pi}_{\mu}(t,t';\mathbf{p},\mathbf{p}') = \sum_{\mathbf{x},\mathbf{x}'} \left\langle O_{\pi}(\mathbf{x}',t') V_{\mu}(\mathbf{x},t) O^{\dagger}_{K}(\mathbf{0},0) \right\rangle e^{-i\mathbf{p}\mathbf{x}-i\mathbf{p}'(\mathbf{x}'-\mathbf{x})}$$

$$\rightarrow \frac{\sqrt{Z_{K,\mathrm{src}} Z_{\pi,\mathrm{snk}}}}{4 E_{K}(\mathbf{p}) E_{\pi}(\mathbf{p}') Z_{V}} \left\langle \pi(p') | V^{(\mathrm{R})}_{\mu} | K(p) \right\rangle$$

$$\times e^{-E_{K}(\mathbf{p}) t - E_{\pi}(\mathbf{p}') (t'-t)}$$

$$C^{K(\pi)}(t; \mathbf{p}) = \sum_{\mathbf{x}} \left\langle O_{K(\pi)}(\mathbf{x}, t) O^{\dagger}_{K(\pi)}(\mathbf{0}, 0) \right\rangle e^{-i\mathbf{p}\mathbf{x}}$$

$$\rightarrow \frac{\sqrt{Z_{K(\pi), \text{src}} Z_{K(\pi), \text{snk}}}{2 E_{K(\pi)}(\mathbf{p})} e^{-E_{K(\pi)}(\mathbf{p}) t}$$

$$\frac{C_{\mu}^{K\pi}(t,t';\mathbf{p},\mathbf{p}')}{C^{K}(t;\mathbf{p}) C^{\pi}(t'-t;\mathbf{p}')} = \frac{1}{Z_{V} \sqrt{Z_{K,\mathrm{snk}} Z_{\pi,\mathrm{src}}}} \langle \pi(p') | V_{\mu}^{(\mathrm{R})} | K(p) \rangle$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

э

ratio for q^2 dependence

in this study

$$\begin{aligned} R' &= \frac{\frac{C_{\mu}^{K\pi}(t,t';\mathbf{p},\mathbf{p}')}{C^{K}(t;\mathbf{p})C^{\pi}(t'-t;\mathbf{p}')}}{\frac{C_{\mu}^{K\pi}(t,t';\mathbf{0},\mathbf{0})}{C^{K}(t;\mathbf{0})C^{\pi}(t'-t;\mathbf{0})}} &\to \frac{\langle \pi(p')|V_{\mu}^{(\mathbf{R})}|K(p)\rangle}{\langle \pi(0)|V_{\mu}^{(\mathbf{R})}|K(0)\rangle} = \frac{E_{K}(\mathbf{p}) + E_{\pi}(\mathbf{p}')}{M_{K} + M_{\pi}} F(p,p'),\\ (\to \text{double ratio by JLQCD w/ p or }\mathbf{p}' = \mathbf{0}) \end{aligned}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

F(p, p'): result

• $|\mathbf{p}|$ or $|\mathbf{p}'| = 1$: clear plateau, $\leq 5\%$ accuracy in F(p, p')

• $|\mathbf{p}|$ or $|\mathbf{p}'| = \sqrt{2}$: $\lesssim 5 - 10\%$ accuracy in F(p, p')

• $|\mathbf{p}|$ or $|\mathbf{p}'| = \sqrt{3}$: poor signal at two smaller $m_{ud,sea} \Rightarrow$ not used in analysis

$\xi(q^2)$: double ratio

• F(p,p') and $\xi(q^2) \Rightarrow f_+(q^2), f_0(q^2)$

$$F(p,p') = \frac{f_+(q^2)}{f_0(q_{\max}^2)} \left(1 + \frac{E_K(\mathbf{p}) - E_\pi(\mathbf{p}')}{E_K(\mathbf{p}) + E_\pi(\mathbf{p}')} \,\xi(q^2) \right), \quad \xi(q^2) = \frac{f_-(q^2)}{f_+(q^2)}$$

• double ratio for $\xi(q^2)$, Bećirević et al., 2004

$$R_{k}(t,t';\mathbf{p},\mathbf{p}') = \frac{C_{k}^{K\pi}(t,t';\mathbf{p},\mathbf{p}') C_{4}^{KK}(t,t';\mathbf{p},\mathbf{p}')}{C_{4}^{K\pi}(t,t';\mathbf{p},\mathbf{p}') C_{k}^{KK}(t,t';\mathbf{p},\mathbf{p}')} \qquad (k = 1, 2, 3)$$

$$\xi(q^{2}) = \frac{-(E_{K}(\mathbf{p}) + E_{K}(\mathbf{p}'))(p + p')_{k} + (E_{K}(\mathbf{p}) + E_{\pi}(\mathbf{p}'))(p + p')_{k} R_{k}}{(E_{K}(\mathbf{p}) + E_{K}(\mathbf{p}'))(p - p')_{k} - (E_{K}(\mathbf{p}) - E_{\pi}(\mathbf{p}'))(p + p')_{k} R_{k}}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

3

 $\xi(q^2)$: result

• $|\xi(q^2)| \lesssim 0.05$ w/ error of 50-100% error

significant m_{q,val} dependence

イロト 不得 とくほ とくほう

ъ

- q^2 interpolation at each sea quark mass
 - calculate $f_0(q^2)$ from F(p, p') and $\xi(q^2)$
 - 2 interpolate $f_0(q^2)$ from step 1) and $f_0(q^2_{\text{max}})$ to $q^2 = 0$

interpolation form

$$\begin{array}{lll} f_0(q^2) &=& f(0) \, (1 + \lambda_0 \, q^2) \ \mbox{(linear)} \\ f_0(q^2) &=& \frac{f(0)}{1 - \lambda_0 \, q^2} \ \mbox{(polar)} \\ f_0(q^2) &=& f(0) \, (1 + \lambda_0 \, q^2 + \lambda' \, q^4) \ \mbox{(quadratic)} \end{array}$$

< 同 ト く 三 ト

method-1: result

- q_{max}^2 is small \Rightarrow short interp.
- linear, polar, quad. \Rightarrow consistent $f_0(0)$
- linear: largest χ^2 /dof
- quad.: large error of λ'
- employ polar fit

э

q^2 interpolation: method-2

- JLQCD, 2005
 - **1** interpolate F(p,p') to $q^2 = 0$ (with ${f p}$ (or ${f p}'$) fixed)
 - 2 extrapolate $\xi(q^2)$ to $q^2 = 0$
 - Solution calculate $f_0(0)$ from $F(p, p')|_{q^2=0}$ and $\xi(0)$

- F(p, p') lin, polar, quad. fits ⇒ consistent results
 ξ(q²)
 - mild q^2 dependence \Rightarrow employ linear fit
- $f_0(0)$ consistent with method-1
- similar accuracy

T. Kaneko K₁₃ semileptonic form factor w/ two flavors of DW quarks

q^2 interpolation: summary

- very accurate $f_0(q_{\max}^2)$
- small $q_{\text{max}}^2 \simeq 0.01$ with $m_{s,\text{phys}}/2 \lesssim m_{ud} \lesssim m_{s,\text{phys}}$
- reasonably accurate value at $|\mathbf{p}|, |\mathbf{p}'| \neq 0$ \Downarrow
- q^2 interpolation:
 - 1% correction to f_0
 - w/ small sys error

∜

 $f_0(q_{\rm max}^2)$ $f_0(0)$ m_s m_{ud} 0.02 0.03 1.00067(17) 0.9994(5)0.02 0.04 1.00202(48) 0.9973(14)0.02 0.05 1.00352(82) 0.9939(24)0.03 0.02 1.00050(22) 0.9987(5)0.03 0.04 1.00036(11)0.9990(2)1.00126(35) 0.03 0.05 0.9965(8)1.00098(55) 0.04 0.02 0.9959(9)0.03 1.00024(10) 0.04 0.9991(2)0.04 0.05 1.00018(6) 0.9992(2)

- $f_0(0)$ w/ accuracy of \lesssim 0.3%
- several interp. forms/ method-1 and 2 \Rightarrow consistent $f_0(0)$

5. chiral extrapolation

fit form
f₊(0)
ξ(0)

・ロト ・聞 と ・ ヨ と ・ ヨ と ・

э

• consider ChPT expansion of $f_+(0) (= f_0(0))$

$$f_+(0) = 1 + f_2 + \Delta f$$

• Ademollo-Gatto theorem: SU(3) breaking $\propto (m_s - m_{ud})^2$ \Rightarrow no analytic term (\ni LECs in $O(p^4) \mathcal{L}$) in f_2

$$\begin{split} f_2 \mbox{ in } N_f = 2 \mbox{ PQChPT, } & \textit{Bećirević et al., 2005} \\ f_2^{(\mathrm{PQ})} &= -\frac{2\,M_K^2 + M_\pi^2}{32\,\pi^2\,f_\pi^2} - \frac{3\,M_K^2\,M_\pi^2 \mathrm{ln}[M_\pi^2/M_K^2]}{64\,\pi^2\,f_\pi^2\,(M_K^2 - M_\pi^2)} \\ &+ \frac{M_K^2\,(4\,M_K^2 - M_\pi^2)\,\mathrm{ln}[2 - M_\pi^2/M_K^2]}{64\,\pi^2\,f_\pi^2\,(M_K^2 - M_\pi^2)}, \end{split}$$

 f_2 can be calculated precisely from measured $M_{K,\pi}$ and f_{π}

 chiral extrapolation of Δf from Ademollo-Gatto theorem:

$$R_{\Delta f} = \frac{\Delta f}{(M_K^2 - M_\pi^2)^2} \\ = \begin{cases} c_0 \iff \text{analytic term in } f_4 \\ c_0 + c_{1,v} (M_K^2 + M_\pi^2) \iff \text{previous studies} \\ c_0 + c_{1,s} M_\pi^2 + c_{1,v} (M_K^2 + M_\pi^2) \\ c_0 + c_{1,v} (M_K^2 + M_\pi^2) + c_{2,v} (M_K^2 + M_\pi^2)^2 \end{cases}$$

イロト イポト イヨト イヨ

chiral extrapolation

fit form $f_+(0)$ $\xi(0)$

$f_{+}(0)$

T. Kaneko

K13 semileptonic form factor w/ two flavors of DW quarks

- mild m_q dependence \Rightarrow ill-determined quad.term
- 50% error in $R_{\Delta f} \Rightarrow$ 50% error in $\Delta f \Rightarrow$ 1% error in $f_+(0)$ $f_2 \sim 2\%$ correction, $\Delta f \sim 1-2\%$ correction
- at physical quark mass

$$f_+(0) = 0.964(9)(5)$$

previous estimates;

Leutwyler-Roos	quark model	0.961(8)
Becirevic et al.	$N_f = 0$	0.960(5)(6)
JLQCD	$N_f = 2$	0.952(6)
Fermilab-MILC-HPQCD	$N_f = 3$	0.962(6)(9)

イロト イ押ト イヨト イヨト 二臣

chiral extrapolation $fit form \\ f_+(0) \\ \xi(0) \\ \xi$

fit form =
$$c_0 + c_{1,s} M_\pi^2 + c_{1,v} \left(M_K^2 - M_\pi^2 \right)$$

< < >> < <</>

A =
 A =
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

э

6. |*V*_{*us*}|

T. Kaneko K₁₃ semileptonic form factor w/ two flavors of DW quarks

◆□ > ◆□ > ◆豆 > ◆豆 >

■ _ _ のへ (~

 $\left|V_{us}
ight|=\left|V_{us}
ight|$

 $|V_{us}|$

- $|V_{us} f_0(0)| = 0.2239(23)$ from $\Gamma_{K_{e^3}^+}$, E865, 2003
- $f_{+}^{K^{+}\pi^{0}}(0)/f_{+}^{K^{0}\pi^{-}}(0) = 1.022$, Leutwyler-Roos, 1984
- $|V_{us}|$

 $f_{+}(0) = 0.964(9)(5) \Rightarrow |V_{us}| = 0.2273(24)(23)$

CKM unitarity

$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1 - \delta$$
$$|V_{ud}| = 0.9738(5)$$
$$|V_{ub}| = (3.67 \pm 0.47) \times 10^{-3}$$

 $\delta=0.0001(18)\,\Leftrightarrow\,0.0033(15),~\text{PDG 2004}$

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → つく⊙

7. summary

T. Kaneko K₁₃ semileptonic form factor w/ two flavors of DW quarks

イロン イロン イヨン イヨン

æ

summary: what have been done

• K_{l3} form factor in two-favor QCD with domain-wall quarks

 $f_{+}(0) = 0.964(9)(5) \Rightarrow |V_{us}| = 0.2273(26)(23)$

• ~ 1% accuracy for $f_+(0)$

- double ratio method \Rightarrow very accurate $f_0(q_{\max}^2; m_{ud}, m_s)$
- q^2 interpolation
 - small q_{\max}^2
 - reasonably accurate $f_0(q^2)$ w/ $|\mathbf{p}| \neq 0$
 - \Rightarrow small sys. error due to the short interpolation
- chiral extrapolation
 - no LECs in f_2
 - Δf is 1–2% correction
 - \Rightarrow 50% accuracy in Δf is sufficient

summary: what have to be done

- $|V_{us}|$ from K_{l3} decays
 - scaling violation \leftarrow consistency with JLQCD($N_f = 2$)
 - fi nite size effects \leftarrow ChPT, Bećirević et al., 2004
 - extension to three-flavor QCD
 - \Leftarrow consistency among $N_f = 0, 2, 3$
 - RBC+UKQCD: talks by C.Maynard, S.Cohen
 - toward lighter ud sea quark mass \Rightarrow larger q_{\max}^2
 - byproduct: $F_V^{\pi}(q^2)$, $\langle r^2 \rangle_{\pi}$
- $|V_{us}|$ from hyperon decay \leftarrow talk by S.Sasaki
- other CKM elements from heavy meson decays

 construction of heavy quark action: talk by H-W.Lin

DWQCD on QCDOC \Rightarrow favor physics