<u>Pomeron</u> and Gauge/String Duality[†]__

Sokendai, Japan--- March 9, 2006

Richard C. Brower Boston University

R.C. Brower, Joe Polchiski, Matt Strassler and Chung-I Tan hep-th 0603xxx

QCD Theory Space!

Outline

☐ I. Tutorial: Regge, String theory & AdS/CFT

□ II. Synthesis of Hard(BFKL) & Soft (Regge) Pomeron

 \Box III. Lattice QCD \equiv String theory experimental data

□VI. Possible impact on New Algorithms

See also KITP Conference: QCD and String Theory (Nov 15-19, 2004) http://online.itp.ucsb.edu/online/qcd_04

I Tutorial

FIG. 1. Meson (ρ , K^* and a) Regge trajectories constructed from recent tabulated data (dark circles and error bars, PDG 2000). Boxes are model TDA predictions for the ρ trajectory.

•

$$J = \alpha_{\rho}(t) \equiv \alpha' t + \alpha(0)$$

$$A_{\pi^+\pi^-\to\pi^+\pi^-}(s,t)\simeq \Gamma[1-\alpha_{\rho}(t)](-\alpha' s)^{\alpha_{\rho}(t)}$$

<u>Dolan-Horn-Schmid</u> <u>duality</u> (*Phys.Rev.* 166, 1768 (1968: t-channel Regge amplitude $A \simeq (-s)^{\alpha(t)}$ smoothly interpolates s-channel resonances (analyticity / unitarity)

$$eta(t)(-lpha's)^{lpha_{
ho}(t)} \simeq \sum_n rac{g_n^2}{s-(M_n-i\Gamma_n)^2}$$

Dual Pion Amplitude (aka NS string[†])

$$A_{\pi^+\pi^- \to \pi^+\pi^-}(s,t) = \frac{\Gamma[1 - \alpha_{\rho}(t)]\Gamma[1 - \alpha_{\rho}(s)]}{\Gamma[1 - \alpha_{\rho}(s) - \alpha_{\rho}(t)]}$$

$$= (1 - \alpha_{\rho}(s) - \alpha_{\rho}(t)) \frac{\Gamma[1 - \alpha_{\rho}(t)]\Gamma[1 - \alpha_{\rho}(s)]}{\Gamma[2 - \alpha_{\rho}(s) - \alpha_{\rho}(t)]} \sim \alpha'(s + t)$$

If $\alpha_{rho}(0) = \frac{1}{2}$ then χ Lagrangian implies low energy (Adler) zero $A(p_1 \rightarrow 0) = 0$ or $s = t \rightarrow m_{\pi}^2 = 0$

[†] Neveu-Schwarz "Quark model of dual pions", 1971

Failures of (flat space) String for QCD

(i) ZERO MASS STATE (gauge/graviton)
(ii) EXTRA SUPER SYMMETRY
(iii) EXTRA DIMENSION 4+6 = 10

(iv) NO HARD PROCESSES! (totally wrong dynamics)

Wide angle is ridiculous: $A(s,t) \rightarrow \exp\left[-\alpha'(s \ln s + t \ln t)\right]$ Strings are too soft: $\langle X_{\perp}^2 \rangle \simeq \alpha' \log[N_{modes}]$ Form Factors do not exist! $F[q^2] \simeq \exp[-q_{\perp}^2 log(\infty)]$

No longitudinal modes on the Flux tube, etc.

Need to give mass to Graviton to turn into a the 2⁺⁺Glueball

Maldacena: "Solution put 10-d (super) strings in curved space"

first example: $AdS^5 \times S^5$ string $\equiv \mathcal{N} = 4$ Super Conformal YM in 4-d

D brane Picture: Two Descriptions Open stings are Gluons <u>dual</u> to closed string Gravity.

• 3-branes (1+3 world volume) -- Source for open strings and closed strings:

Scale Invariance and the 5th dimension

Scale Invariance and the 5th dimension

II Pomeron and String/Gauge Duality

BFKL (Balinsky-Lipatov-Fadin-Kuraev)

Weak perturbation theory: 1st order in α_s and all orders (α_s log s)ⁿ
 Implies "planar" diagrams (e.g. N_c = ∞) and conformal scaling
 BFKL is essentially a large N_c CFT results!

$$A(s,t=0) \simeq \int \frac{dk_{\perp}}{k_{\perp}} \int \frac{dk'_{\perp}}{k'_{\perp}} \Phi_1(k_{\perp}) K(s;k_{\perp},k'_{\perp}) \Phi_2(k'_{\perp})$$

$$K(s,k_{\perp},k_{\perp}')pprox rac{s^{lpha(0)-1}}{\sqrt{\pi\ln s}}e^{-\left[(\ln k_{\perp}'-\ln k_{\perp})^2/4\mathcal{D}\ln s
ight]}$$

Diffusion in "virtuality" k_{\perp}

Weak Coupling:

$$\alpha(0) = 1 + \ln(2)g^2 N/\pi^2$$

$$\mathcal{D} = \frac{14\zeta(3)}{\pi} g^2 N / 4\pi^2.$$

Diffusion in $log(k_{\perp})$ is familiar in Regge but ...!

$$A_{closed\ string}(s,t) \simeq (e^{-i\pi/2}s)^{\alpha_G(t)}$$

Take Fourier transform:

$$\exp[-lpha' q_{\perp}^2 \log(s)/2]
ightarrow \exp[-lpha' x_{\perp}^2/2lpha' \log(s)]$$

Regge "Form Factor" shrinks due to diffusion in impact parameter space as you increase "time" (y = log[s] ← the rapidity)

How do we combine diffusion in x_{\perp} and $\log(k_{\perp})$?

Intuitive Approach: Soft vs Hard in M QCD

(<u>RCB & C-I Tan</u> hep-th/Tan 0207144)

□ Red Shift:

Proper Length: $\Delta s = (r/R) \Delta x$ Local Momentum: $p^{local}_{\mu} = (R/r) p_{\mu}$ (large p in IR!)

□ Wide angles has power (Polcinki & Strassler) $A_{string}(\alpha' R^2 s/r^2, \alpha' R^2 t/r^2) \sim exp[-R^2 s log(s) /r^2]$ Domant piece is conformal scaling for r → ∞

Regge region is an average for r:

$$T(s,t) = \int_{r_{min}}^{\infty} dr \, \Phi(r) (\alpha' s)^{\alpha(0) + \alpha'_{eff}(r)t}$$

with $lpha_{eff}'(r)=lpha' R^2/r^2$

Ultra local Model in AdS⁵

Soft: IR region: $r \simeq r_{min}$, gives Regge pole with slope $\alpha'_{qcd} \sim \alpha' R^3/r_{min}^3$ $T(s,t) \sim \exp[+\alpha' t \log(s)](\alpha'_{qcd}s)^{\alpha_s(0)}$

□ The ``shrinkage" is caused the <u>soft stringy</u> ``form factor" in impact parameter:

$$< X_{\perp}^2 > \simeq \alpha'_{qcd} \log(s) \sim \alpha'_s \log(\text{No. of d.o.f})$$

Hard IR region: BFKL-like Pomeron with almost flat cut in the j-plane

$$T(s,t) \sim (\alpha's)^{\alpha_s(0)}/(\log s)^{\gamma+1}$$

Strong Coupling YM is computed in String Theory

□ Semi classical 2-d conformal String theory in AdS⁵ background

Strong Coupling:

at t =0
$$\mathcal{K}(r,r',s) = \frac{s^{j_0}}{\sqrt{4\pi \mathcal{D} \ln s}} e^{-(\ln r - \ln r')^2/4\mathcal{D} \ln s}$$

Diffusion in "warped co-ordinate"
 $j_0 = 2 - \frac{2}{\sqrt{g^2 N}} + O(1/g^2 N)$ $\mathcal{D} = \frac{1}{2\sqrt{g^2 N}} + O(1/g^2 N)$
Compare with
weak Coupling: $K(s,k_{\perp},k_{\perp}') \approx \frac{s^{\alpha(0)-1}}{\sqrt{\pi \ln s}} e^{-[(\ln k_{\perp}' - \ln k_{\perp})^2/4\mathcal{D} \ln s]}$

$$j_0 = 1 + \ln(2)g^2 N/\pi^2$$

$$\mathcal{D} = \frac{14\zeta(3)}{\pi} g^2 N / 4\pi^2.$$

Main Lesson from AdS/CFT dual description of Diffraction

Here $\lambda \equiv R^4/\alpha'^2 = g_{YM}^2 N = 4\pi\alpha N$ in $\mathcal{N} = 4$ supersymmetric Yang-Mills theory — the numerical coefficient can differ in other theories but the proportionality always holds — so large λ is large 't Hooft coupling.

The identification of r and k_{\perp} has its source in the UV/IR correspondence and has been suggested in numerous contexts, but here appears as a nontrivial and precise match. The effective diffusion time, $\ln s$, holds for both the BFKL and the Regge diffusions, at both large and small λ .

General form depends on Conformal Symmetry.

Hard versus Soft Diffraction (Lightcone Derivation)

$$\mathcal{A}(s,t) = \int_0^1 dw \ (1-w)^{-2\alpha' p_1 p_3} \ w^{-2\alpha' p_1 p_2} = \frac{\Gamma(-\alpha(s))\Gamma(-\alpha(t))}{\Gamma(-\alpha(s) - \alpha(t))} ,$$

 $A(s,t)\delta^2(p_1^\perp+p_2^\perp+p_3^\perp+p_4^\perp) ~~\sim~$

$$\int d\tilde{\tau} \mathcal{D} X_{\perp}(\sigma,\tau) V_1 V_2 V_3 V_4 e^{-\frac{1}{2} \int d\tau \int_0^{p^+} d\sigma (\dot{X}_{\perp}^2 + \frac{1}{(2\pi\alpha')^2} X_{\perp}'^2)}$$

The Schwarz-Christoffel trans maps the upper half plane (a) into the light-cone strip $\sigma + i\tau$ (b):

 $\rho = \tau + i\sigma = \frac{1}{\pi} [p_1^+ \log(z - w) - |p_2^+| \log(z) + p_3^+ \log(z - 1)] + \text{const}$

Reduction to 1-d Path Integral

$$A \sim \int d\tilde{\tau} \ \mathcal{D}X_{\perp}^{(in)}(\sigma) \mathcal{D}X_{\perp}^{(out)}(\sigma)$$
$$\Phi(X_{\perp}^{(2)}) \ \Phi(X_{\perp}^{(4)}) \ G_{int}(X_{\perp}^{(out)}, X_{\perp}^{(in)}, \tau) \ \Phi(X_{\perp}^{(1)}) \ \Phi(X_{\perp}^{(3)})$$

where

$$\Phi(X_{\perp}^{(r)}(\sigma)) = e^{-\frac{1}{2}\sum_{n=1}^{\infty}\omega_n X_n^{(r)} X_n^{(r)}} e^{ip_{\perp}^{(r)} x_{\perp}^{(r)}},$$

$$G_{int}(X_{\perp}^{(out)}, X_{\perp}^{(in)}, \tau) \sim \delta(R_{\perp}) \exp\left[-\frac{\tau}{2} \int_{0}^{p^{+}} d\sigma \dot{X}^{-}\right],$$

$$\omega_n^{(r)} = \frac{n}{2\alpha'|p_r^+|}$$

Regge Behavior is diffusion for time log(s) in impact parameter space (and AdS radial space)

$$A(s,q_{\perp}) = s \int db_{34} db_{12} e^{-iq_{\perp}(b_{34} - b_{12})} \mathcal{K}(s,b_{34},b_{12})$$

$$[\partial_{\log(s)} - 1 - \alpha' \partial_x^2] K(y; x, x') = \delta(x - x') \delta(y)$$

Rapidity $y = \log(s/s_0)$ and $t = -q_{\perp}^2$ $[\partial_y - 1 - \alpha' t]K(y; t) = \delta(y)$ Boosts increases size of "hadronic string"

$$\exp[-\alpha' q_{\perp}^2 \log(s)] \rightarrow \exp[-b^2/(\alpha' \log(s))]$$

AdS⁵ Modifications

$$L = \frac{1}{2} \int_0^{p^+} d\sigma [\dot{X}_{\perp}^2 + \dot{Z}^2 + \frac{1}{(2\pi\alpha'_{eff}(Z))^2} (X'_{\perp}^2 + Z'^2)]$$

$$\alpha'_{eff} = \alpha' Z^2 / R^2 = \alpha' \exp[-2u]$$

where Z = 1/r

$$\begin{split} &[\partial_y - 1 + \alpha'_{eff}(u)q^2 - (\alpha'/R^2)(\partial_u^2 - 1)]\mathcal{K}(y;q,u,u') \\ &= \delta(u - u')\delta(y) \;. \end{split}$$

Strong Coupling Pomeron

$$\frac{1}{2\sqrt{g^2N}} \left[-\frac{d}{du^2} - te^{-2u} \right] \Psi(u,J) = (2 - J - \frac{2}{\sqrt{g^2N}}) \Psi(u,J)$$

- $V(u) = -t e^{-u} 0 < u < \infty$
- Attractive for t >0, Regge Pole +
- BKLF cut
- t < 0 only scattering state for BKLF

Hard Wall at $r = r_{\min}$

Conformal Breaking by Hardwall Model

V running

(Strong) Running Coupling

$\mathcal{N} = 4$ Strong vs Weak BFKL

All coupling form: $\Delta(j)$ DGLAP vs BFKL

III. Lattice Data for String Theory

Lattice Data vs AdS Confining Gauge Theory at $\alpha' = 0$

IIA Classification of QCD_4

States from 11-d G _{MN}				States from 11-d A _{MNL}		
$G_{\mu\nu}$	G _{µ,11}	G _{11,11}	m ₀ (Eq.)	$A_{\mu\nu,11}$	Α _{μνρ}	m ₀ (Eq.)
G _{ij}	C _i	φ		B _{ij}	C ₁₂₃	
2++	1++	0++	4.7007 (T ₄)	1+-	0+-	7.3059(N ₄)
$G_{i\tau}$	C_{τ}			$\mathbf{B}_{\mathrm{i} au}$	$C_{ij\tau}$	
1-+	0-+		5.6555 (V ₄)	1-	1	$9.1129(M_4)$
$G_{\tau\tau}^{(-)}$				(-)	G ^α _α	
0^{++}			$2.7034(S_4)$		0++	10.7239(L ₄)

Subscripts to J^{PC} refer to $P_{\tau} = -1$ states

Lattice QCD₄ Glueball Spectrum

Moringstar and Peardon

Transverse String excitations

Ν	m	$ n_{m^+}, n_{m^-}>$	Λ	States
1	1	1 ₁₊ >, 1 ₁₋ >	1	Π
2	2	$ 1_{2^+}>, 1_{2^-}>$	1	Π_{g}^{u}
	1	$ 2_{1+}>, 2_{1-}>$	2	$\Delta_{ m g}$
	1	1, 1,>	0	Σ+'
3	1,2	$ 1_{1+},1_{2+}^{1+}\rangle, 1_{1-},1_{2-}\rangle$	2	$\left \begin{array}{c} \boldsymbol{\Delta}_{\mathrm{u}} \end{array} \right ^{\mathrm{g}}$
	1,2	$ 1_{1+}, 1_{2-} > + 1_{1-}, 1_{2+} >$	0	\sum_{u}^{+}
	1,2	$ 1_{1+},1_{2}>$ - $ 1_{1-},1_{2+}>$	0	Σ_{μ}
	3	1 ₃₊ >, 1 ₃₋ >	1	ц П'"
	1	$ 1_{1+},2_{1}>$, $ 2_{1+},1_{1}>$	1	ц П,
	1	$ 3_{1+}\rangle, 3_{1-}\rangle$	3	Φ_{u}
4	1,3	$ 1_{1+},1_{3}>$ - $ 1_{1-},1_{3+}>$	0	\sum_{α}^{u}

Excited states (Semi-classical limit)

$$\frac{2 \text{ Transverse (Goldstone) Modes}}{-\partial_t^2 X_{\perp} + v^2(z) X_{\perp}'' = 0}$$
$$\Delta E_n = \frac{\omega_n(L)\pi}{L} \simeq \frac{n\pi}{L}$$

Radial (longitudinal) Mode

$$-\partial_t^2 \xi + v^2(z)\xi'' = M^2(z)\xi$$

$$\Delta E_n = \sqrt{(\omega_n/L)^2 + M_{BG}^2} \simeq M_{GB} + \frac{\omega_n^2}{2L^2 M_{GB}}$$

String Level struture

 $L\Delta E_n/n\pi - 1$

Fit to Ground State of Lattice Data

• Fit is essential perfect

$$V(r) - V(r_0) = T_0 r - \frac{g_{eff}^2 \mathbf{1}}{4\pi r}$$

where $T_0 = 5.04 / fermi^2$

and $g_{eff}^2/4\pi = .26^{\dagger}$

Lattice Summer scale: $r_0 \simeq 0.5$ fermi. $r_0^2 dV(r_0)/dr = 1.65$

[†] Comment: In strong coupling AdS^5 both term are actually $\sim (g^2_{YM}N)^{1/2}$

IV Possible Impact on Algorithms?

4. Taking the 5th Dimension Seriously

What is best use of 5th Dimension?

Let glue be a true 5-d (warped) Gauge theory?

Improved isolation of Left and Right domain walls by "localization"?

Should the 5-d theory be SUSY YM broken by domain walls boundaries ?

Quantum Links uses replaces U_{μ} **by fermionic bilinears.**

(R.Brower, S.Chandrasekharan, S.Riederer, U.-J.Wiese D-Theory: Field Quantization by Dimensional Reduction of Discrete Variables hep-lat/0309182)

What is hadronic content of 5-d DW QCD?

Hadronic AdS⁵/CFT works pretty well. Why?

$$\Delta_{\mu}\mathcal{J}^{a}_{\mu}(x,s) + \Delta_{5}\mathcal{J}^{a}_{5}(x,s) = 0 \Rightarrow$$

Vector:
$$\Delta_{\mu} V_{\mu}^{a,DW}(x) = \sum_{s} \mathcal{J}_{\mu}^{a}(x,s) = 0$$

Axial:
$$\Delta_{\mu} A_{\mu}^{a,DW}(x) = \sum_{s}^{L_{s}/2} [\mathcal{J}_{\mu}^{a}(s,x) - \mathcal{J}_{\mu}^{a}(L_{s}-s,x)]$$

$$= -2m \bar{q}_{x} \lambda^{a} \gamma_{5} q_{x} + 2\bar{Q}_{x} \gamma_{5} \lambda^{a} Q_{x}$$

Define Overlap Axial by the decent relation:

 $\langle A^{ov}_{\mu}(x)\psi_y\bar{\psi}_z\rangle_c\equiv\langle A^{DW}_{\mu}(x)q_y\bar{q}_z\rangle_c$

Mesons: A generalized weak coupling (chiral theory) 5-d theory

$$S = \int d^4x \int_{-L_s/2}^{L_s/2} ds \left[\frac{1}{4\sqrt{f(s)}} F_{\mu\nu} F_{\mu\nu} + \frac{r^4 \sqrt{f(s)}}{2R^4} F_{\mu5} F_{\mu5} + m_q(...) \right]$$

where $\Sigma(x) = P \exp[i \int_{-\infty}^{\infty} \lambda^a A_5^a(x,s) ds]$ obey Chiral

Observable	Measured	Model A	Model B
	(MeV)	(MeV)	(MeV)
m_{π}	139.6 ± 0.0004	139.6*	140
$m_ ho$	$775.8{\pm}0.5$	775.8*	793
m_{a_1}	$1230{\pm}40$	1363	1256
$f\pi^{-}$	92.4±0.35	92.4*	86.5
$F_{ ho}^{1/2}$	345±8	329	337
$F_{a_1}^{1/2}$	433±13	452	449
$g_{ ho\pi\pi}$	$6.03{\pm}0.07$	5.43	6.05

"QCD and a Holographic Model of Hadrons" Erlich, Katz, Son, Stephanov, hep-ph/05011

