Pomeron

and Gauge/String Duality ${ }^{\dagger}$

Sokendai, Japan--- March 9, 2006

Richard C. Brower
Boston University

R.C. Brower, Joe Polchiski, Matt Strassler and Chung-I Tan hep-th 0603xxx

QCD Theory Space!

String/Gravity

$$
\mathcal{N}=0 \quad \mathcal{N}=1, \mathrm{n}_{\mathrm{f}}=1
$$

Flux Tubes/Spectra (IR/Long Distances)

Chiral Restored (High Temp)

Color Supercond
(Dense quarks)

Outline

\square I. Tutorial: Regge, String theory \& AdS/CFT
II. Synthesis of Hard(BFKL) \& Soft (Regge) Pomeron
\square III. Lattice $\mathrm{QCD} \equiv$ String theory experimental data
\square VI. Possible impact on New Algorithms
See also KITP Conference: QCD and String Theory (Nov 15-19, 2004) http://online.itp.ucsb.edu/online/qcd_04

I Tutorial

FIG. 1. Meson ($\rho, K^{\prime *}$ and a) Regge trajectories constructed from recent tabulated data (dark circles and error bars, PDG 2000). Baxes are model TDA predictions for the p trajectory.

$$
=-
$$

STRING THEORIST'S REGGE THEORY:

$$
J=\alpha_{\rho}(t) \equiv \alpha^{\prime} t+\alpha(0)
$$

$A_{\pi^{+} \pi^{-} \rightarrow \pi^{+} \pi^{-}}(s, t) \simeq \Gamma\left[1-\alpha_{\rho}(t)\right]\left(-\alpha^{\prime} s\right)^{\alpha_{\rho}(t)}$
Dolan-Horn-Schmid duality (Phys.Rev. 166, 1768 (1968: t-channel Regge amplitude $\mathrm{A} \simeq(-\mathrm{s})^{\alpha(t)}$ smoothly interpolates s-channel resonances (analyticity / unitarity)

$$
\beta(t)\left(-\alpha^{\prime} s\right)^{\alpha_{\rho}(t)} \quad \simeq \quad \sum_{n} \frac{g_{n}^{2}}{s-\left(M_{n}-i \Gamma_{n}\right)^{2}}
$$

$\pi^{\pi^{+}}$

Dual Pion Amplitude (aka NS string ${ }^{\dagger}$)

$$
\begin{aligned}
& A_{\pi^{+} \pi^{-} \rightarrow \pi^{+} \pi^{-}}(s, t)=\frac{\left\ulcorner\left[1-\alpha_{\rho}(t)\right] \Gamma\left[1-\alpha_{\rho}(s)\right]\right.}{\Gamma\left[1-\alpha_{\rho}(s)-\alpha_{\rho}(t)\right]} \\
& \quad=\left(1-\alpha_{\rho}(s)-\alpha_{\rho}(t)\right) \frac{\Gamma\left[1-\alpha_{\rho}(t)\right] \Gamma\left[1-\alpha_{\rho}(s)\right]}{\Gamma\left[2-\alpha_{\rho}(s)-\alpha_{\rho}(t)\right]} \sim \alpha^{\prime}(s+t)
\end{aligned}
$$

$$
\text { If } \alpha_{\text {rho }}(0)=1 / 2 \text { then }
$$

χ Lagrangian implies low energy (Adler) zero

$$
\mathrm{A}\left(\mathrm{p}_{1} \rightarrow 0\right)=0 \quad \text { or } \mathrm{s}=\mathrm{t} \rightarrow \mathrm{~m}_{\pi}^{2}=0
$$

† Neveu-Schwarz "Quark model of dual pions", 1971

Failures of (flat space) String for QCD

(i) ZERO MASS STATE (gauge/graviton)
(ii) EXTRA SUPER SYMMETRY
(iii) EXTRA DIMENSION $4+6=10$
(iv) NO HARD PROCESSES! (totally wrong dynamics)

Wide angle is ridiculous:

$$
A(s, t) \rightarrow \exp \left[-\alpha^{\prime}(s \ln s+t \ln t)\right]
$$

Strings are too soft:

$$
\left\langle X_{\perp}^{2}\right\rangle \simeq \alpha^{\prime} \log \left[N_{\text {modes }}\right]
$$

$$
F\left[q^{2}\right] \simeq \exp \left[-q_{\perp}^{2} \log (\infty)\right]
$$

No longitudinal modes on the Flux tube, etc.

Need to give mass to Graviton to turn into a the 2^{++}Glueball

Open String

Maldacena: "Solution put 10-d (super) strings in curved space"
first example: $\mathrm{AdS}^{5} \times \mathrm{S}^{5}$ string $\equiv \mathcal{N}=4$ Super Conformal YM in 4-d

D brane Picture: Two Descriptions

Open stings are Gluons dual to closed string Gravity.

- 3-branes (1+3 world volume) -- Source for open strings and closed strings:

Dynamics of N D3 branes at low energies is (Super) $\mathrm{SU}(\mathrm{N}) \mathrm{YM}$.

Their mass curves the space (near horizon) into AdS^{5} and emits closed string (graviton)

Scale Invariance and the $5^{\text {th }}$ dimension

Large Sizes
pt defects at $r \equiv 1 / z=1 / \rho \longrightarrow *$

Scale Invariance and the $5^{\text {th }}$ dimension

II Pomeron and String/Gauge Duality

BFKL (Balinsky-Lipatov-Fadin-Kuraev)

\square Weak perturbation theory: $1^{\text {st }}$ order in α_{s} and all orders $\left(\alpha_{\mathrm{s}} \log \mathrm{s}\right)^{\mathrm{n}}$
Implies "planar" diagrams (e.g. $\mathrm{N}_{\mathrm{c}}=\infty$) and conformal scaling
BFKL is essentially a large N_{c} CFT results!

$$
\begin{aligned}
& A(s, t=0) \simeq \int \frac{d k_{\perp}}{k_{\perp}} \int \frac{d k_{\perp}^{\prime}}{k_{\perp}^{\prime}} \Phi_{1}\left(k_{\perp}\right) K\left(s ; k_{\perp}, k_{\perp}^{\prime}\right) \Phi_{2}\left(k_{\perp}^{\prime}\right) \\
& K\left(s, k_{\perp}, k_{\perp}^{\prime}\right) \approx \frac{s^{\alpha(0)-1}}{\sqrt{\pi \ln s}} e^{-\left[\left(\ln k_{\perp}^{\prime}-\ln k_{\perp}\right)^{2} / 4 \mathcal{D} \ln s\right]}
\end{aligned}
$$

Diffusion in "virtuality" k_{\perp}
Weak
Coupling:

$$
\alpha(0)=1+\ln (2) g^{2} N / \pi^{2}
$$

$$
\mathcal{D}=\frac{14 \zeta(3)}{\pi} g^{2} N / 4 \pi^{2}
$$

Diffusion in $\log \left(k_{\perp}\right)$ is familiar in Regge but ...!

$$
A_{\text {closed string }}(s, t) \simeq\left(e^{\left.-i \pi / 2_{s}\right)^{\alpha_{G}}(t)}\right.
$$

Take Fourier transform:
$\exp \left[-\alpha^{\prime} q_{\perp}^{2} \log (s) / 2\right] \rightarrow \exp \left[-\alpha^{\prime} x_{\perp}^{2} / 2 \alpha^{\prime} \log (s)\right]$
Regge "Form Factor" shrinks due to diffusion in impact parameter space as you increase "time" ($\mathrm{y}=\log [\mathrm{s}] \leftarrow$ the rapidity $)$

How do we combine diffusion in x_{\perp} and $\log \left(\mathrm{k}_{\perp}\right)$?

Intuitive Approach: Soft vs Hard in M QCD

(RCB \& C-I Tan hep-th/Tan 0207144)

- Red Shift:

Proper Length: $\quad \Delta \mathrm{s}=(\mathrm{r} / \mathrm{R}) \Delta \mathrm{x}$
Local Momentum: $\quad \mathrm{p}^{\text {local }}=(\mathrm{R} / \mathrm{r}) \quad \mathrm{p}_{\mu} \quad$ (large p in IR!)
\square Wide angles has power (Polcinki \& Strassler)

$$
A_{\text {string }}\left(\alpha^{\prime} R^{2} s / r^{2}, \alpha^{\prime} R^{2} t / r^{2}\right) \sim \exp \left[-R^{2} s \log (s) / r^{2}\right]
$$

Domant piece is conformal scaling for $r \rightarrow \infty$
\square Regge region is an average for r :

$$
T(s, t)=\int_{r_{\min }}^{\infty} d r \Phi(r)\left(\alpha^{\prime} s\right)^{\alpha(0)+\alpha_{e f f}^{\prime}(r) t}
$$

with $\quad \alpha_{e f f}^{\prime}(r)=\alpha^{\prime} R^{2} / r^{2}$

Ultra local Model in AdS ${ }^{5}$

\square Soft: IR region: $r \simeq r_{\text {min, }}$, gives Regge pole with slope $\alpha_{\text {qcd }}{ }^{\sim} \sim \alpha^{\prime} R^{3} / r^{3}{ }_{\text {min }}$

$$
T(s, t) \sim \exp \left[+\alpha^{\prime} t \log (s)\right]\left(\alpha_{q c d}^{\prime} s\right)^{\alpha_{s}(0)}
$$

-The "shrinkage" is caused the soft stringy "form factor" in impact parameter:

$$
<X_{\perp}^{2}>\simeq \alpha_{q c d}^{\prime} \log (s) \sim \alpha_{s}^{\prime} \log (\text { No. of d.o.f })
$$

[Hard IR region: BFKL-like Pomeron with almost flat cut in the j-plane

$$
T(s, t) \sim\left(\alpha^{\prime} s\right)^{\alpha_{s}(0)} /(\log s)^{\gamma+1}
$$

Strong Coupling YM is computed in String Theory

\square Semi classical 2-d conformal String theory in AdS ${ }^{5}$ background
Strong Coupling:

$$
\text { at } \mathrm{t}=0 \quad \mathcal{K}\left(r, r^{\prime}, s\right)=\frac{s^{j_{0}}}{\sqrt{4 \pi \mathcal{D} \ln s}} e^{-\left(\ln r-\ln r^{\prime}\right)^{2} / 4 \mathcal{D} \ln s}
$$

Diffusion in "warped co-ordinate"

$$
j_{0}=2-\frac{2}{\sqrt{g^{2} N}}+O\left(1 / g^{2} N\right) \quad \mathcal{D}=\frac{1}{2 \sqrt{g^{2} N}}+O\left(1 / g^{2} N\right)
$$ Compare with

weak Coupling: $\quad K\left(s, k_{\perp}, k_{\perp}^{\prime}\right) \approx \frac{s^{\alpha(0)-1}}{\sqrt{\pi \ln s}} e^{-\left[\left(\ln k_{\perp}^{\prime}-\ln k_{\perp}\right)^{2} / 4 \mathcal{D} \ln s\right]}$

$$
j_{0}=1+\ln (2) g^{2} N / \pi^{2}
$$

$$
\mathcal{D}=\frac{14 \zeta(3)}{\pi} g^{2} N / 4 \pi^{2}
$$

Main Lesson from AdS/CFT dual description of Diffraction

Here $\lambda \equiv R^{4} / \alpha^{\prime 2}=g_{Y M}^{2} N=4 \pi \alpha N$ in $\mathcal{N}=4$ supersymmetric Yang-Mills theory - the numerical coefficient can differ in other theories but the proportionality always holds - so large λ is large 't Hooft coupling.

The identification of r and k_{\perp} has its source in the UV/IR correspondence and has been suggested in numerous contexts, but here appears as a nontrivial and precise match. The effective diffusion time, In s, holds for both the BFKL and the Regge diffusions, at both large and small λ.

General form depends on Conformal Symmetry.

Hard versus Soft Diffraction (Lightcone Derivation)

$$
\mathcal{A}(s, t)=\int_{0}^{1} d w(1-w)^{-2 \alpha^{\prime}} p_{1} p_{3} w^{-2 \alpha^{\prime} p_{1} p_{2}}=\frac{\Gamma(-\alpha(s)) \Gamma(-\alpha(t))}{\Gamma(-\alpha(s)-\alpha(t))}
$$

With $\mathrm{X}^{+}=\tau$

$A(s, t) \delta^{2}\left(p_{1}^{\perp}+p \frac{\perp}{2}+p \frac{\perp}{3}+p \frac{\perp}{4}\right) \sim$
$\int d \tilde{\tau} \mathcal{D} X_{\perp}(\sigma, \tau) V_{1} V_{2} V_{3} V_{4} e^{-\frac{1}{2} \int d \tau \int_{0}^{p^{+}} d \sigma\left(\dot{X}_{\perp}^{2}+\frac{1}{\left(2 \pi \alpha^{\prime}\right)^{2}}{X_{\perp}^{\prime}}^{2}\right)}$

The Schwarz-Christoffel trans maps

 the upper half plane (a) into the light-cone strip $\sigma+\mathrm{i} \tau(\mathrm{b})$:
$\rho=\tau+i \sigma=\frac{1}{\pi}\left[p_{1}^{+} \log (z-w)-\left|p_{2}^{+}\right| \log (z)+p_{3}^{+} \log (z-1)\right]+$ const

Reduction to 1-d Path Integral

$$
A \sim \int d \tilde{\tau} \mathcal{D} X_{\perp}^{(i n)}(\sigma) \mathcal{D} X_{\perp}^{(o u t)}(\sigma)
$$

$\Phi\left(X_{\perp}^{(2)}\right) \Phi\left(X_{\perp}^{(4)}\right) G_{i n t}\left(X_{\perp}^{(o u t)}, X_{\perp}^{(\text {in })}, \tau\right) \Phi\left(X_{\perp}^{(1)}\right) \Phi\left(X_{\perp}^{(3)}\right)$
where

$$
\begin{aligned}
& \Phi\left(X_{\perp}^{(r)}(\sigma)\right)=e^{-\frac{1}{2} \sum_{n=1}^{\infty} \omega_{n} X_{n}^{(r)} X_{n}^{(r)} e^{i p_{\perp}^{(r)}} x_{\perp}^{(r)}} \\
& G_{i n t}\left(X_{\perp}^{(o u t)}, X_{\perp}^{(i n)}, \tau\right) \sim \delta\left(R_{\perp}\right) \exp \left[-\frac{\tau}{2} \int_{0}^{p^{+}} d \sigma \dot{X}^{-}\right] \\
& \omega_{n}^{(r)}=\frac{n}{2 \alpha^{\prime}\left|p_{r}^{+}\right|}
\end{aligned}
$$

Regge Behavior is diffusion for time $\log (\mathrm{s})$ in impact parameter space (and AdS radial space)

$$
\begin{aligned}
& A\left(s, q_{\perp}\right)=s \int d b_{34} d b_{12} e^{-i q_{\perp}\left(b_{34}-b_{12}\right)} \mathcal{K}\left(s, b_{34}, b_{12}\right) \\
& {\left[\partial_{\log (s)}-1-\alpha^{\prime} \partial_{x}^{2}\right] K\left(y ; x, x^{\prime}\right)=\delta\left(x-x^{\prime}\right) \delta(y)}
\end{aligned}
$$

Rapidity $\mathrm{y}=\log \left(\mathrm{s} / \mathrm{s}_{0}\right)$ and $\mathrm{t}=-\mathrm{q}_{\perp}^{2}$

$$
\left[\partial_{y}-1-\alpha^{\prime} t\right] K(y ; t)=\delta(y)
$$

Boosts increases size of "hadronic string"

$\exp \left[-\alpha^{\prime} \mathrm{q}^{2}{ }_{\perp} \log (\mathrm{s})\right] \rightarrow \exp \left[-\mathrm{b}^{2} /\left(\alpha^{\prime} \log (\mathrm{s})\right)\right]$

AdS ${ }^{5}$ Modifications

$$
\begin{array}{r}
L=\frac{1}{2} \int_{0}^{p^{+}} d \sigma\left[\dot{X}_{\perp}^{2}+\dot{Z}^{2}+\frac{1}{\left(2 \pi \alpha_{e f f}^{\prime}(Z)\right)^{2}}\left(X_{\perp}^{\prime}+Z^{\prime 2}\right)\right] \\
\alpha_{e f f}^{\prime}=\alpha^{\prime} Z^{2} / R^{2}=\alpha^{\prime} \exp [-2 u] \\
\text { where } Z=1 / r
\end{array}
$$

$$
\left[\partial_{y}-1+\alpha_{e f f}^{\prime}(u) q^{2}-\left(\alpha^{\prime} / R^{2}\right)\left(\partial_{u}^{2}-1\right)\right] \mathcal{K}\left(y ; q, u, u^{\prime}\right)
$$

$$
=\delta\left(u-u^{\prime}\right) \delta(y)
$$

Strong Coupling Pomeron

$\frac{1}{2 \sqrt{g^{2} N}}\left[-\frac{d}{d u^{2}}-t e^{-2 u}\right] \Psi(u, J)=\left(2-J-\frac{2}{\sqrt{g^{2} N}}\right) \Psi(u, J)$

- $\mathrm{V}(\mathrm{u})=-\mathrm{t}^{-\mathrm{u}} 0<\mathrm{u}<\infty$
- Attractive for $\mathrm{t}>0$, Regge Pole +
- BKLF cut
- $\mathrm{t}<0$ only scattering state for BKLF

Hard Wall at $\mathrm{r}=\mathrm{r}_{-}\{\min \}$

Conformal Breaking by Hardwall Model

$V(u)$
$4 \underbrace{t=0}_{t=0} t$

V running

$V(w)$	$t<0$ $t=0$	
0	$t>0$	w

(Strong) Running Coupling

$\mathcal{N}=4$ Strong vs Weak BFKL

All coupling form: $\Delta(\mathrm{j})$ DGLAP vs BFKL

III. Lattice Data for String Theory

Lattice Data vs AdS Confining Gauge Theory at $\alpha^{\prime}=0$

IIA Classification of QCD 4

States from 11-d G ${ }_{\text {MN }}$				States from 11-d $\mathrm{A}_{\mathrm{MNL}}$		
$\mathrm{G}_{\mu \nu}$	$\mathrm{G}_{\mu, 11}$	$\mathrm{G}_{11,11}$	m_{0} (Eq.)	$\mathrm{A}_{\mu \mathrm{v}, 11}$	$\mathrm{A}_{\mu \nu \rho}$	m_{0} (Eq.)
$\begin{aligned} & \mathrm{G}_{\mathrm{ij}} \\ & 2^{++} \end{aligned}$	$\begin{array}{\|l\|} \hline \mathrm{C}_{\mathrm{i}} \\ 1^{++} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \phi \\ 0^{++} \\ \hline \end{array}$	$4.7007\left(\mathrm{~T}_{4}\right)$	B_{ij} 1^{+}	$\begin{aligned} & \mathrm{C}_{123} \\ & 0^{+} \end{aligned}$	$7.3059\left(\mathrm{~N}_{4}\right)$
$\mathrm{G}_{\text {it }}$	$\begin{aligned} & C_{\tau} \\ & 0^{+} \end{aligned}$		$5.6555\left(\mathrm{~V}_{4}\right)$	$\begin{aligned} & \mathrm{B}_{\mathrm{ir}} \\ & 1 \end{aligned}$		$9.1129\left(\mathrm{M}_{4}\right)$
$\underline{\mathrm{G}_{\tau \tau}}{ }^{+}$			$2.7034\left(\mathrm{~S}_{4}\right)$		$\mathrm{G}^{\alpha}{ }_{\alpha}$ 0^{++}	$10.7239\left(\mathrm{~L}_{4}\right)$

Subscripts to ${ }^{\mathrm{JCC}}$ refer to $\mathrm{P}_{\tau}=-1$ states

Lattice QCD $_{4}$ Glueball Spectrum

Moringstar and Peardon

Transverse String excitations

N	m	$\mid \mathrm{n}_{\mathrm{m}+}, \mathrm{n}_{\mathrm{m}-}>$	Λ	States
1	1	$\left\|1_{1+}>,\right\| 1_{1-}>$	1	Π
2	$\begin{aligned} & 2 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & \left\|1_{2+}\right\rangle,\left\|1_{2}\right\rangle \\ & \left\|2_{1+}\right\rangle,\left\|2_{1-}\right\rangle \end{aligned}$	1 2 0	Π_{g}
3	$\begin{aligned} & 1,2 \\ & 1,2 \\ & 1,2 \\ & 3 \\ & 1 \\ & 1 \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \Delta_{u}{ }_{u}{ }^{g} \\ & \Sigma_{u}^{+}{ }_{u} \\ & \Sigma_{u}^{-} \\ & \Pi_{u}{ }_{u} \\ & \Pi_{u}^{\prime} \\ & \Phi_{u} \end{aligned}$
4	1,3	$\mid 1_{1+}, 1_{2} \gg-11_{1}, 1_{3+}>$	0	Σ

Excited states (Semi-classical limit)

2 Transverse (Goldstone) Modes

$$
\begin{array}{r}
-\partial_{t}^{2} X_{\perp}+v^{2}(z) X_{\perp}^{\prime \prime}=0 \\
\Delta E_{n}=\frac{\omega_{n}(L) \pi}{L} \simeq \frac{n \pi}{L}
\end{array}
$$

Radial (longitudinal) Mode

$$
-\partial_{t}^{2} \xi+v^{2}(z) \xi^{\prime \prime}=M^{2}(z) \xi
$$

$$
\Delta E_{n}=\sqrt{\left(\omega_{n} / L\right)^{2}+M_{B G}^{2}} \simeq M_{G B}+\frac{\omega_{n}^{2}}{2 L^{2} M_{G B}}
$$

String Level struture

Fit to Ground State of Lattice Data

- Fit is essential perfect

$$
V(r)-V\left(r_{0}\right)=T_{0} r-\frac{g_{e f f}^{2}}{4 \pi} \frac{1}{r}
$$

where $\mathrm{T}_{0}=\mathbf{5 . 0 4} /$ fermi 2
and $g^{2}{ }_{\text {eff }} / 4 \pi=.26^{\dagger}$

Lattice Summer scale: $\mathrm{r}_{0} \simeq 0.5$ fermi. $\mathrm{r}^{2}{ }_{0} \mathrm{dV}\left(\mathrm{r}_{0}\right) / \mathrm{dr}=1.65$

$$
\begin{aligned}
& \dagger \text { Comment: In strong } \\
& \text { coupling AdS }{ }^{5} \text { both } \\
& \text { term are actually } \\
& \sim\left(g^{2}{ }_{V N} N\right)^{1 / 2} \\
& \hline
\end{aligned}
$$

IV Possible Impact on Algorithms?
4. Taking the 5th Dimension Seriously

What is best use of $5^{\text {th }}$ Dimension?

- Let glue be a true 5-d (warped) Gauge theory?

Improved isolation of Left and Right domain walls by "localization"?

- Should the 5-d theory be SUSY YM broken by domain walls boundaries?
- Quantum Links uses replaces U_{μ} by fermionic bilinears.
(R.Brower, S.Chandrasekharan, S.Riederer, U.-J.Wiese

D-Theory: Field Quantization by Dimensional Reduction of Discrete Variables hep-lat/0309182)

- What is hadronic content of 5-d DW QCD?

Hadronic AdS ${ }^{5} /$ CFT works pretty well. Why?

5-d Vector Current \rightarrow 4-d Vector/Axial Current

$\Delta_{\mu} \mathcal{J}_{\mu}^{a}(x, s)+\Delta_{5} \mathcal{J}_{5}^{a}(x, s)=0 \Rightarrow$

Vector:

$$
\Delta_{\mu} V_{\mu}^{a, D W}(x)=\sum_{s} \mathcal{J}_{\mu}^{a}(x, s)=0
$$

Axial: $\begin{aligned} \Delta_{\mu} A_{\mu}^{a, D W}(x) & =\sum_{s}^{L_{s} / 2}\left[\mathcal{J}_{\mu}^{a}(s, x)-\mathcal{J}_{\mu}^{a}\left(L_{s}-s, x\right)\right] \\ & =-2 m \bar{q}_{x} \lambda^{a} \gamma_{5} q_{x}+2 \bar{Q}_{x} \gamma_{5} \lambda^{a} Q_{x}\end{aligned}$

Define Overlap Axial by the decent relation:

$$
\left\langle A_{\mu}^{o v}(x) \psi_{y} \bar{\psi}_{z}\right\rangle_{c} \equiv\left\langle A_{\mu}^{D W}(x) q_{y} \bar{q}_{z}\right\rangle_{c}
$$

Mesons: A generalized weak coupling (chiral theory) 5-d theory

$$
S=\int d^{4} x \int_{-L_{s} / 2}^{L_{s} / 2} d s\left[\frac{1}{4 \sqrt{f(s)}} F_{\mu \nu} F_{\mu \nu}+\frac{r^{4} \sqrt{f(s)}}{2 R^{4}} F_{\mu 5} F_{\mu 5}+m_{q}(\ldots)\right]
$$

where $\Sigma(x)=P \exp \left[i \int_{-\infty}^{\infty} \lambda^{a} A_{5}^{a}(x, s) d s\right]$ obey Chiral L

Observable	Measured (MeV)	Model A (MeV)	Model B (MeV)
m_{π}	139.6 ± 0.0004	139.6^{*}	140
m_{ρ}	775.8 ± 0.5	775.8^{*}	793
$m_{a_{1}}$	1230 ± 40	1363	1256
f_{π}	92.4 ± 0.35	92.4^{*}	86.5
$F_{\rho}^{1 / 2}$	345 ± 8	329	337
$F_{a_{1}}^{1 / 2}$	433 ± 13	452	449
$g_{\rho \pi \pi}$	6.03 ± 0.07	5.43	6.05

"QCD and a Holographic Model of Hadrons"Erlich, Katz, Son, Stephanov, hep-ph/05011

FINI

