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2 Research Objective

Recent advance of computational sciences is strongly related with the dramatic increase of
computing power due to massively parallel computers (MPP). Physical systems in scienti�c and
engineering applications can be broadly classi�ed into continuous systems and particle-based
systems. This project focuses on MPP for continuous physical systems, and pursue R&D on
the two issues urgently needed for the next-generation of such computers: (i) to realize fast
and exible I/O and visualization mechanisms to deal with enormous amount of data generated
by such computers, and (ii) to develop a novel computer architecture required to enhance the
computer speed to the range of a hundred TFLOPS to meet the demands of science applications.
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Development of MPP for particle-based systems is pursued in a parallel project. Combining
the development of the two projects, we propose the concept of Heterogeneous Multi-Computer

System (HMCS) for an eÆcient processing of computations of complex physical systems having
both continuous and multi-particle components.

3 Research Achievements in FY2001

3.1 Parallel I/O and Visualization System

In this year we have �nalized the development of our parallel I/O and visualization system
and applied it to various systems. The total package is named PAVEMENT (Parallel I/O and
Visualization Environment).

The parallel I/O component of the package is named PAVEMENT/PIO. We have ported
it to various architectures this year, which includes CP-PACS MPP system, shared-memory
workstations and their clusters, and various Linux-based PC clusters. As a total system, PIO can
connect an MPP system to surrounding computational resources through parallel Fast-Ethernet
channels through multiple network switches, keeping wide bandwidth and easy programmability
to end-users.

We have developed several application systems based on PIO. One of the applications is
HMCS which consists of general purpose and special purpose parallel processors connected
with PIO. This system implements a new methodology of computational physics that combines
multiple paradigms of computation. The detail of HMCS will be described later in Section 3.4.

Another application is PAVEMENT/PFS (Parallel File System) which provides a high
throughput �le access from an MPP to local or remote parallel/distributed disks. The con-
cept of PFS is based on the distribution of parallel �le access streams to parallel disks on user

level. Such a technique on OS level is well known as disk striping. We have implemented the same
idea with a user-level library to utilize PIO with minimum overhead and high programmability
for users. The concept of PFS is based on SPMD programming with the space decomposition
method. If one makes a simple declaration of the global mapping rule for parallel processes on
to a logical array at �le opening, suceeding �le operations are automatically translated as partial
accesses to the logical array (Figure 1). With PIO communication, PFS is applicable both for
local parallel disks and for remote parallel disks with high I/O througput.

The basic modules for parallel visualization system named PAVEMENT/VIZ was completed
last year. VIZ consists of a collection of program modules designed to embed in AVS/Express,
which is a defacto standard GUI-oriented visualization programming system in object oriented
manner. The basic components of VIZ are a parallelized 3-D volume rendering module and a
high throughput data input module to attach AVS/Express to PIO.

This year we extended the functionality of VIZ for more exible and user-friendly interface.

SPMD process Partial data

Logical data image

Parallel processes

Domain decomposed data Distributed disk

Physical data mapping image

Figure 1: Concept of logical/physical �le mapping on PAVEMENT/PFS
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Figure 2: SCIMA

With this expansion, the user can manipulate 3-D objects with mouse dragging, keeping the
high speed real time parallelized rendering feature. This function enables the replacement of the
original module with our parallelized one keeping the backward compatibility. The parallelized
rendering module will be distributed as AVS/Express extension kit from our research partner,
Kubota Graphics Technologies.

3.2 Memory Integrated VLSI Architecture

SCIMA (Software Controlled Integrated Memory Architecture) is a new VLSI architecture for
high performance computing. This year, we designed SCIMA at register transfer level, proposed
an optimization strategy on the usage of the integrated memory, and developed a compiler for
SCIMA.

3.2.1 Architectural Overview

Figure 2-(a) shows the schematic view of the proposed SCIMA. Addressable SCM is integrated
into a processor chip in addition to ordinary cache. SCM occupies one consecutive and un-
cacheable part of logical address space as shown in Figure 2-(b).

Two kinds of data accesses are available in SCIMA; (1) register$ SCM$ o�-chip memory,
and (2) register $ cache $ o�-chip memory.

Data transfers between SCM and o�-chip memory are invoked explicitly by new instructions
called page-load and page-store. These instructions can identify large amount of data transfer,
which reduces the number of o�-chip memory accesses for consecutive data access. These in-
structions also support block-stride data transfer which packs non-consecutive data of o�-chip
Memory and transfers them into a consecutive area of SCM.

3.2.2 RTL Design

SCIMA is de�ned as an extension of existing scalar architectures. While the extension consists
of only an addition of several new instructions and on-chip memory, it might a�ect the clock
frequency. In order to measure this e�ect, we designed two processors, a scalar processor and
SCIMA. We selected MIPS R10000 microprocessor as the reference architecture, since it is widely
used and is one of the current high-performance microprocessors. Since R10000, as usual with
high-performance microprocessors, is quite complex, we did not design the whole processor but
focused on the di�erence between R10000 and SCIMA.
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Table 1: delay results of critical path

delay[ns] R10000 model SCIMA model

select & issue 6.11 6.48
cache way select (not including array access time) 3.31 3.50

Figure 2-(c) shows the data path of the SCIMA. The shaded region represents the part
modi�ed from the original R10000. We have designed the shaded part for both R10000 and
SCIMA at the register transfer level in Verilog-HDL. Then, those designs are synthesized into
gate level by the "Design Compiler" of Synopsis Inc. and ROHM's 0.35 �m CMOS technology.

We have estimated the delay of critical paths from the obtained designs. There are two
possibilities for the location of the critical paths. One is the selection of executable instructions
from the queues followed by the issue of the selected instructions. The other is cache way
selection logic following cache array access. Table 1 shows the estimated delay of each paths in
R10000 and SCIMA. As seen from the table, if the delay of cache array access is longer than 2.8
ns, the cache access path gets the critical path. In either case, the clock frequency of SCIMA
degrades only 5% compared with R10000, which is quite small penalty. As is seen from the
result of the following section, SCIMA is still much faster than R10000 in spite of this penalty.

3.2.3 Optimization of Integrated Memory Usage

We have developed an optimization strategy on the usage of on-chip memory space, and have
made preliminary evaluation of this strategy. Data arrays are classi�ed based on their access
characteristics. Figure 3 describes the strategies for making good use of on-chip memory.

Among the strategies, (1) and (2) are more e�ective than the others. Transferring such
non-reusable arrays with large granularity is very helpful for reducing latency-stall. Therefore,
we give higher priority to (1) and (2). After they are applied, strategies of (4), (5) and (6) are
applied to reusable arrays by using the rest area of on-chip memory.

We used two programs for evaluation. One is kernel FT from NAS Parallel Benchmarks and
the other is QCD (Quantum ChromoDynamics) computation. We compared the performance
of SCIMA with cache-based architecture in order to evaluate the proposed strategy. High-level
optimizations such as loop tiling and loop exchange are applied to both architectures in advance.
For SCIMA, the proposed optimization is applied additionally by hand.

The assumptions for performance evaluation are as follows; total integrated memory size

not-reusable

consecutive

irregular

stride

Reusability

Consecutiveness

���

��� ���

���

��� ���

use SCM as a 
stream buffer

��������	����
�
����������	����
��������
��
	����
���	��

��������	����
��������
��
��	�
���	���

�

� ����������	����
��������
��
	������
��������������

reusable

use SCM as a 
stream buffer

not use SCM

reserve SCM
for reused data 

reserve SCM
for reused data 

reserve SCM
for reused data 

Figure 3: Strategy for Using SCM

4



�������

�������

�������

�������

	������


������

�������

��
�

��
�� ��

�

��
�� ��

�

��
�� ��

�

��
��

���� ���� ���� ����

�	� 
���
�
�
�
�
�
��
�
�
�

�
�
��
 ��!��"�#��� ����

�������� ����

$%�&� ����'�

(a) FT

�������

�������

�������

�������

	������


�����	


�����	


�����	


�����	

���


�	�
���


�	�
���


�	�
���


�	�

���� ���� ���� ����

��� �
��

�
�

�
�

�
��

�
�

�
�

�
 �

!

��"��#�$���!��  

 �������!��  

%&�'�!����(�

(b) QCD

Figure 4: Performance Result

is 64KB or 512KB; cache line size is 32B or 128B; throughput of cache/On-Chip Memory is
8B/cycle; throughput of O�-Chip Memory is 1B/cycle; O�-Chip Memory access latency is 160
cycle; and cache prefetching is available (in Cache model only).

Figure 4 presents the required cycles for each program. The cycles are decomposed into
three categories, CPU busy time, latency stall and throughput stall.

As seen from Fig. 4, SCIMA achieves better performance than Cache for both programs
under all con�gurations. This is because SCIMA can successfully and drastically reduce the
latency-stall time by reducing the main memory traÆc. This result reveals that the proposed
optimization strategy is very e�ective.

3.2.4 Compiler

A program running on a SCIMA-based processor must explicitly control data transfer between
on-chip memory and o�-chip memory. Like other modern processor technologies, this control
of memory transfer should be the responsibility of compilers. However, when and what data
should be transferred for the best performance during program execution is still a research issue.
To provide a research platform for this issue, we have developed a Fortran compiler that accepts
directives designed for SCIMA. Programmers can manually specify memory transfer with these
directives. This compiler consists of two components: a front-end compiler from Fortran to C,
and a back-end compiler from C to assembly.

Front-end Compiler The front-end compiler translates a Fortran program including di-
rectives of memory transfer between on-chip and o�-chip memory. These directives are newly
designed for SCIMA. They are called SCIMA directives. The design goal is to provide good
abstraction for users but keep the ability for �ne-grained control. This would make it easier for
researchers to examine new ideas of optimization and develop a general-purpose optimization
algorithm for SCIMA.

The SCIMA directives are used for dynamically mapping part of array elements on on-chip
memory. This mapping is hidden from users, who do not have to use special syntax for accessing
the on-chip elements. The compiler translates array access written in regular Fortran to the C
code accessing on-chip memory.

A very simple program example using the SCIMA directives is as follows.

double precision sum

double precision a(N*2,N*2)

!$scm begin (a, N, N, 0, 0)

!$scm load (a, N + 1, N + 1, N, N)

sum = 0.0
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do i = N + 1, N * 2

sum = sum + a(i, i)

enddo

!$scm end (a)

The lines beginning with $scm are directives. In the region surrounded by begin and end, all the
accesses to array a are interpreted as accesses to on-chip memory. The directive load speci�es
which part of the elements of the array are to be copied to on-chip memory when the program
execution reaches that directive.

The compiler has been already released although some known bugs still remain. We used
RWCP Omni Compiler Software as a basis of the compiler. The generated C code can be
compiled by either the native MIPS compiler or our back-end compiler.

Back-end Compiler The current version of SCIMA processor assumes the MIPS R10000
ISA. The back-end compiler takes a C code generated from the front-end, and translates it
into an object code of the MIPS R10000 processor architecture in SGI IRIX N32 ABI with the
SCIMA processor's extensions. The back-end compiler generates a code with SCIMA extended
instructions to control data transfer between on-chip and o�-chip memories. The generated code
is optimized for e�ective use of extended number of registers in SCIMA, and the compiler is
designed for various register structure. On-chip data address is allocated to a particular section
corresponding to on-chip memory by the loader.

In the backend compiler, the following phases are implemented to optimize codes as other
optimizing compilers:

� Common subexpression elimination and constant-folding, constant propagation.

� Loop optimization including loop invariant elimination and induction variable elimination,
operator-strength reduction.

� Global register allocation by register coloring technique.

The optimizing compiler allows programmers and architects to evaluate the performance of
several benchmark programs with SCIMA directives under the change of architectural parame-
ters such as the number of registers and extended instructions.

3.3 Node Interconnection and System Design

It is necessary to introduce a full-optical network to support enormous computational power
of processors in next generation high-end MPP. However, a full optical switching system is
still quite expensive and its switching speed is still not enough for rapid handling of short
messages. One of the solutions is to combine optical and electrical links/switches in a clustered
hierarchical network. The inter-cluster communication is performed by full-optical switches with
wide bandwidth and large latency, while the inner-cluster communication is performed by optical
links and opt-electrical switches with medium bandwidth and low latency. Setting the number
of clusters to be much smaller than that of processing nodes in a cluster, a collection of short
messages for the same destination cluster can be combined into a large message on a special
router which connects the cluster to the inter-cluster switch. Such a hierarchical network can
balance the trading-o� between bandwidth and latency on optical networks.

For instance, an MPP with 2048 processing nodes is reasonably designed as 8 clusters each of
them consisting of 256 nodes, where the inner-cluster network is a 2-dimensional hypercrossbar
(16 � 16 nodes) and the inter-cluster network is a full-crossbar. We have developed a special
network simulator which can handle di�erent network link widths and latencies in a system,
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and have evaluated the performance of various con�gurations. The key issue is toughness of
the network to inter-cluster communication, that is, locality of data transfer. Assuming the
ratio of the network bandwidth of inter-cluster network to inner-cluster network is 100:1, the
network achieves almost the same bandwidth with completely local communication for up to
10% of inter-cluster communication ratio on random transfer. This ratio is acceptable for various
scienti�c simulations.

As the entire system image based on this network structure, we can design an ideal high
performance MPP with SCIMA processors. To connect more than 10000 processors in a system,
it is better to introduce SMP node structure which saves the total number of network ports.
We have evaluated the SMP con�guration of SCIMA processors in a computational node. As a
result, 2-way to 4-way SMP con�guration is suitable for the computational node. Using 4-way
SMP with 8 GFLOPS SCIMA processors and connecting 4096 computational nodes, an MPP
with 131 TFLOPS of performance can be constructed.

3.4 Development of Heterogeneous Multi-Computer System

Heterogeneous Multi-Computer System (HMCS) is a platform to combine general purpose and
special purpose MPP systems to simulate complex systems having multiple paradigms or mul-
tiple scales. In our Research for the Future Project, we have been developing two types of next
generation MPP systems, that is, a system for continuum simulations and that for particle-based
simulations. HMCS is the �nal image of the combination of the two systems which provides an
ideal large-scale simulation platform.

The basic concept of HMCS is to distribute multiple computation phases to multiple machine
functions keeping the problem-machine �tness and the computational eÆciency. This year,
we have implemented the prototype of HMCS with CP-PACS MPP with 2048 processors and
GRAPE-6 cluster with 8 boards, and have applied it to simulate galaxy formation using SPH
(Smoothed Particle Hydrodynamics) with radiative transfer and self gravity.

System con�guration of HMCS prototype Figure 5 shows the system diagram of
the HMCS prototype. We equip 16 of the I/O processors of CP-PACS with 100base-TX Fast
Ethernet interface, and connect them to the GRAPE-6 cluster system through multiple switches
with PAVEMENT/PIO connection. A parallelized �le server with PAVEMENT/PFS and a
parallelized visualization server with PAVEMENT/VIZ are also connected to this system. The
full con�guration of CP-PACS provides the computational power of 614 GFLOPS for general
purpose computation, while 8 boards of GRAPE-6 (256 GRAPE-6 chips in total) provides
approximately 7 TFLOPS of sustained performance for many body gravity calculation.

In order to manage the 8 boards of GRAPE-6 system and distribute the work load to them,
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we constructed an Alpha-based cluster as the host computer for GRAPE-6 boards. Before
gravity calculation on each GRAPE-6 board, the particle data such as the mass and location of
particles have to be stored to its local memory. Then, particle data are distributed to pipeline
processors on all boards uniformly. Hence, each host node must keep the data of all particles.
For this purpose, particle data prepared by CP-PACS are distributed to host nodes with PIO,
then they are exchanged among all the host nodes. Since PIO does not support global data
broadcasting, this is the best way to reduce the amount of data transfer between CP-PACS
and GRAPE-6 cluster. Calculation results (acceleration for all particles) are extracted from
GRAPE-6 boards by host nodes, and sent back to CP-PACS in a reverse way.

The software of HMCS consists of two elements; an application interface library called by
the user program on CP-PACS, and a daemon program which runs on each GRAPE-6 host
node to communicate with these routines and pass/extract data to/from the GRAPE-6 board.
The functions of these routines are based on the original GRAPE-6 manipulating functions, and
application programmers on CP-PACS can describe the program as if there exist the GRAPE-6
boards directly connected to CP-PACS.

The CP-PACS and GRAPE-6 cluster perform their calculations individually and alterna-
tively. However, they can be partially overlapped by particle data transfer on the CP-PACS
side. In our current application (described in the next part), we have succeeded to hide the
communication overhead partially. On the GRAPE-6 side, the data set-up and actual computa-
tion time is very short compared with that on CP-PACS. Using 1024 PUs of CP-PACS and four
GRAPE-6 nodes, a single step of radiation transfer SPH with self-gravity for 131072 particles
takes 12.3 seconds. Approximately 40% of the processing time is consumed for data transfer
between the two systems, but it is partially overlapped with SPH computation on CP-PACS.

A typical simulation consists of 25000 steps with this problem size, and it can be performed
within 3 days. It is impossible to perform the self-gravity calculation for 131072 particles with
CP-PACS only. Therefore, even if a large fraction of total calculation time is consumed by data
transfer, this prototype of HMCS has provided a great computational performance for complex
computational physics problems.

Application with HMCS prototype There exists a hierarchical structure in the universe
such as stars, black holes, star clusters, galaxies, galaxy clusters, and a large-scale structure.
Three basic processes control this wide variety of systems; they are hydrodynamical process,
gravity, and radiative process. Since astronomical phenomena are highly nonlinear, a large
dynamic range for hydrodynamics is required in numerical approaches. A very e�ective method
for this purpose is the Smoothed Particle Hydrodynamics (SPH), in which physical quantities
are expressed by a superposition of smoothed particles whose individual sizes vary with the local
density.

The gravity part of the SPH calculation requires N2 operations for N particles. With our
HMCS prototype, these gravity calculations are processed very eÆciently with multiple GRAPE-
6 boards. The SPH calculation with GRAPE is often called GRAPE-SPH.

The most reliable treatment of radiation is to solve radiative transfer (RT). This, however, is
a highly complex physical process which requires a large amount of computations. Astrophysical
hydrodynamics coupled with full radiative transfer has never been made. We have developed
an e�ective scheme of radiative transfer for SPH simulation, and implemented it on CP-PACS.
By coupling it with the self-gravity calculation on GRAPE-6 in our HMCS prototype, we have
carried out a RT-SPH calculation with self-gravity for the �rst time.

With the RT-GRAPE-SPH scheme, we have simulated the galaxy formation in the early
history of the universe. It is widely believed that the universe was reionized at redshift epochs
higher than 5, and most galaxies formed after this reionization. Thus, we should investigate the
galaxy formation in background ultraviolet (UV) radiation. The permeation of background UV

8



Figure 6: A Simulation of Galaxy Formation by RT-SPH with HMCS

radiation into protogalactic clouds is controlled by radiative transfer. Hence, RT-GRAPE-SPH
is the most suitable approach for this issue. We have pursued the evolution of primordial density
uctuations in a dark matter-dominated universe using 65536 dark matter particles and 65536
SPH particles.

In Figure 6, the evolutionary sequence of the simulated galaxy formation is shown. At
the initial stage, a density uctuation is generated to match a cold dark matter spectrum.
This uctuation expands with the cosmic expansion, and simultaneously smaller-scale density
uctuations develop inside to form �lamentary structures. Tiny �laments evaporate due to
the heating by background UV radiation, whereas larger �laments shrink to coalesce into a
condensed rotating cloud. This rotating cloud would evolve into a galaxy. This simulation has
revealed that the background UV radiation plays an important role for the �nal structure of the
galaxy. We expect that further work of RT-GRAPE-SPH with HMCS would lead to signi�cant
advance in our understanding on the origin of the hierarchical structure in the universe.

4 Summary and Future Perspectives

In our �ve-year project, we have carried out research and development on key elemental tech-
nologies for next generation MPP with emphasis on high performance processor archtecture, new
methodology of interconnection network and high throughput visualization and I/O processing.
To solve the serious problem of processor-memory gap, we have developed a novel processor
architecture SCIMA which utilizes data locality to minimize the data traÆc among on-chip/o�-
chip circuits. PAVEMENT/PIO and VIZ provide a high throughput I/O feature for various
types of parallel processing systems and high speed visualization for large amount of 3-D data,
respectively.

We wish to emphasize, however, that enhancing the computational power of processors and
network, as has been traditionally pursued so far, would not be suÆcient to achieve real high per-
formance in the next generation of scienti�c simulations. They have to treat complex phenomena
in which both short-ranged and long-ranged interactions and multiples of scales are involved,
and hence require eÆciency in processing more than a single type of computations. HMCS is
a novel approach to combine a general purpose supercomputer and a special purpose one for
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such complex physics simulations. The former system handles continuum simulations which
requires exibility in programming, and the latter one achieves very high speed computations of
routined calculations in particle-based simulations. Thus HMCS combines high exibility and
high performance, distributing the calculation load in a best way possible for each sub-system.

Looking ahead, we envisage further development of the HMCS concept. Coupling two het-
erogeneous computers, while powerful, still su�ers from potential problems from communication
between the systems and load balancing. These problems are resolved if we combine general
purpose and special purpose processors within each processing node, and connect them with
high performance opt-electrical hybrid network to con�gure an MPP system.

It is our assertion that this kind of methodology will be necessary, and indeed will lead to
an ideal platform, for the next generation of large-scale scienti�c simulations characterized by
multiple interactions and scales.
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