
Next-Generation Massively Parallel Computers

| Development of Massively Parallel Computers

for Continuous Physical Systems |

Yoichi Iwasaki (Vice President (Research), University of Tsukuba)

1 Project Organization

Yoichi Iwasaki(Leader) Vice President (Research), Univ. of Tsukuba
Akira Ukawa(Core Member) Inst. of Phys., Univ. of Tsukuba (AIOV)
Sinya Aoki Inst. of Phys., Univ. of Tsukuba (AMOC)
Masayuki Umemura Inst. of Phys., Univ. of Tsukuba (AIOV)
Kazuyuki Kanaya Inst. of Phys., Univ. of Tsukuba (AIOV)
Taishi Nakamoto Inst. of Phys., Univ. of Tsukuba (AIOV)
Tomoteru Yoshie Inst. of Phys., Univ. of Tsukuba (AMOC)
Masanori Okawa High Energy Accelerator Res. Org. (AIOV)
Arifa Ali Khan Cent. Comp. Phys., Univ. of Tsukuba (AMOC)
Taisuke Boku(Core Member) Inst. of Inf. Sci. and Elec., Univ. of Tsukuba (IOV)
Tomonori Shirakawa Inst. of Eng. Mech. and Syst., Univ. of Tsukuba (IOV)
Shigeru Chiba Inst. of Inf. Sci. and Elec., Univ. of Tsukuba (IOV)
Tsutomu Hoshino Inst. of Eng. Mech. and Syst., Univ. of Tsukuba (IOV)
Moritoshi Yasunaga Inst. of Inf. Sci. and Elec., Univ. of Tsukuba (IOV)
Yoshiyuki Yamashita Inst. of Eng. Mech. and Syst., Univ. of Tsukuba (IOV)
Koichi Wada Inst. of Inf. Sci. and Elec., Univ. of Tsukuba (MOC)
Shuichi Sakai Grad. School of Eng., Univ. of Tokyo (MOC)
Kisaburo Nakazawa Dept. Inf. Sci., Meisei Univ. (MOC)
Ikuo Nakata Fac. of Comp. and Inf. Sci., Housei Univ. (IOV)
Hiroshi Nakamura Cent. for Adv. Sci. and Tech., Univ. of Tokyo (MOC)
Yoshiyuki Watase High Energy Accelerator Res. Org. (IOV)
Kenichi Itakura Cent. Comp. Phys., Univ. of Tsukuba (IOV)

Research themes; AIOV: Parallel I/O and visualization for physics applications
AMOC: Memory-integrated VLSI architecture for physics applications
IOV: Parallel I/O and visualization
MOC: Memory-integrated VLSI architecture

2 Research Objective

Recent development of computational sciences is strongly correlated with enhancement

of computing power due to massively parallel computers (MPP). Physical systems in

scienti�c and engineering applications can be broadly classi�ed into continuous systems

and particle-based systems. The CP-PACS project succeeded in developing a high per-

formance MPP focusing on the former which appear in many areas of physics, such as

particle physics, astrophysics and condensed matter physics.

1

In the present project we focus on MPP for continuous physical systems, and pursue

R&D on the two issues urgently needed for the next-generation of such computers: (i) to

realize fast and exible I/O and visualization mechanisms to deal with enormous amount

of data generated by such computers, and (ii) to develop a novel computer architecture

required to enhance the computer speed to the range of a hundred TFLOPS in order to

meet the demands of computational science applications.

We also examine the feasibility of a heterogeneous multi-computer system for an e�-

cient processing of physical systems having continuous and multi-particle components.

3 Overview of Research Plan

Parallel I/O and parallel visualization We aim to develop a standard for high-

performance I/O and visualization system for MPPs, which are exible and inexpensive,

by exploiting recent commodity networking technologies. As a test bed, we shall build a

system consisting of the CP-PACS, a parallel disk server and a graphic server, connected

by a multiple channels of 100base-TX Ethernet through high-speed switching hubs.

We shall develop an API on this system which provides users with a exible paral-

lel I/O environment where the channels to be used out of parallel ones are determined

automatically without intervention from users to balance the load on parallel networks.

In visualization, a software-based exible image processing is still required even hard-

ware technology realizes a high speed but limited rendering process. To realize a exible

real-time image processing, we shall implement a parallelized and extendable visualization

software combined with parallel I/O system for high throughput processing.

Memory-integrated VLSI architecture In spite of development of MPPs with a

speed of 1 TFLOPS, there still remain a number of problems in computational sciences

which require a computing power in the range of a hundred TFLOPS for solution. Meeting

this requirement demands a high oating point operation capability of CPU and a memory

hierarchy structure which ensures a su�cient throughput to supply data from the memory

system to CPU.

We propose a novel processor architecture called SCIMA in which a medium-sized

SRAM is placed within CPU as a software-controllable memory. Evaluation of the archi-

tecture through simulation of Linpack and physics application programs, and LSI design

at the register transfer level shall be made to demonstrate the e�ectiveness and feasibility

of the architecture for large-scale scienti�c and engineering calculations.

We shall also examine how thousands of SCIMA processors should be connected to-

gether to form an MPP with a speed of a hundred TFLOPS.

2

frame
buffer

 100Base-TX
Ethernet Switch

to external
(Ethernet etc.)

disk

assively Parallel Processor
CP-PACS

24 ports

24 ports

Parallel Disk Server
Origin-2000

x 8

x 8

x 8

x 8

Alpha Cluster

Parallel Visualization Server
Onyx2

Figure 1: Experimental environment of parallel I/O system

Heterogeneous multi-computer system In the �nal year of the project we aim

to experiment with a multi-computer system in which MPPs for continuous and multi-

particle systems are uni�ed. This will provide a new vision of MPP toward future large-

scale scienti�c simulations.

4 Research Achievements in FY2000

4.1 Parallel I/O and Visualization System

4.1.1 Parallel I/O system for next generation MPP

This year's research on parallel I/O system for next generation MPP was concentrated

to build a complex with various types of platform as a surrounding environment of MPP

system, based on parallel network connectivity among these systems. In the studies so

far, we have established the basic method to connect a distributed memory MPP and a

shared memory workstation in a point-to-point manner utilizing parallel Fast-Ethernet

channels to provide wide bandwidth and easy programmability to end-users. This year,

the parallel I/O system is extended to manage more than two parallel processing systems

and to realize exible and high-speed data exchange among them.

Figure 1 shows the experimental environment. CP-PACS, being a distributed memory

MPP with 16 I/O units equipped with Fast-Ethernet interface, is the main data generating

system. SGI Origin-2000 with 8 processors and SGI Onyx2 with 4 processors are �le

server and visualization server, respectively. In addition, a cluster system equipped with

16 Compaq Alpha CPU processors exist as an experimental COTS (Commodity O�-The

Shelf) cluster. These systems are connected via parallel 100base-TX Ethernet through a

3

0

5

10

15

20

25

30

1 10 100 1000

T
hr

ou
gh

pu
t (

M
B

/s
ec

)

Message Length (KB)

TCP/IP(16 Parallel)
PIO(16 Parallel)

TCP/IP(4 Parallel)
PIO(4 Parallel)
TCP/IP(Serial)

PIO(Serial)

(a) Throughput on ping-pong transfer

0

50

100

150

200

32 64 128 256 512 1024 2048

E
la

ps
ed

 T
im

e
(s

ec
)

Message Length (KB)

STATIC
DYNAMIC

USER

(b) Dynamic load-balancing feature

Figure 2: Performance of PIO system

couple of high-speed switching hubs. We have introduced multiple switching hubs instead

of single one with a large number of ports to realize a scalability which is not limited by

the maximum number of ports in a switching hub.

On all these machines, a parallel network communication management system named

PIO (Parallel I/O) is running. PIO consists of end-user libraries which provide simple, ef-

�cient and exible API for application programmers and a server program named pioserv

which manages parallel channels usability and data bu�ering on them. The number of

pioserv instances to run on a system depends on the system con�guration. For instance,

on CP-PACS as a distributed memory MPP, a pioserv runs on each I/O processor, while

a multi-threaded single process of pioserv runs with four to eight threads on Origin-2000.

The number and type of pioserv processes are determined by a master con�guration �le

where all system attributes are recorded. All servers communicate with each other via

TCP/IP protocol to maintain the portability of PIO system.

Figure 2(a) shows the performance of data transfer throughput on point-to-point ping-

pong communication between CP-PACS and Origin-2000. Since PIO provides multiple

levels of data bu�ering, it introduces additional latency on ping-pong communication and

the overall throughput is degraded compared with raw TCP/IP communication. However,

when the number of used channels is increased, the total performance also increases in

proportion to the number of channels. For messages of large size, the e�ciency of multiple

channels saturates because the total bandwidth on the Origin-2000 side is not enough

to support that of CP-PACS with 16 channels. However, this problem will be solved

with multiple servers. The PIO system is now extended to support any-to-any dynamic

communication, and it is easy to distribute data among multiple servers.

Figure 2(b) shows the load-balancing feature of PIO. The horizontal axis shows the

average message size to be transferred while the size of each message varies, and the

size of maximum message is a double of that of minimum one. There are three types

4

of load balancing cases: USER, STATIC and DYNAMIC. In USER, the application program

explicitly distributes messages and speci�es channels to be used keeping the load-balance

among parallel channels. In STATIC, there is no dynamic load-balancing, and messages are

always transferred with the nearest channels. In DYNAMIC, PIO system tries to keep the

load-balance dynamically based on channel usage information which is always exchanged

among both sides of communicating machines. As a result, the dynamic load-balancing

works very well to keep the total data transfer time to be minimized and close to USER,

which provides a complete load-balancing. The overhead of dynamic load-balancing to

USER is negligibly small.

4.1.2 Parallel Visualization System

As an application using the PIO system, we have developed a parallelized visualization

system on parallel workstation Onyx2. On the next generation MPP, a powerful com-

puting power which enables a large-scale real-time simulation is expected. On such a

simulation, a real-time data visualization system with high data transfer bandwidth and

high-speed visualization capabilities is required. The PIO system realizes the former

feature. Then we combined the PIO feature with a parallelized visualizer based on a

multi-threaded general purpose data manipulator.

The basic system used here is a defacto-standard visualization system, AVS/Express

which consists of a number of small modules communicating with each other in an object

oriented manner. The original system only provides a simple input from local �les and

sequential processing for each visualization stage. We have extended the data input

method to accept parallel channel inputs with PIO, and also parallelized the volume

rendering module which consumes most of CPU time for heavy calculation duty. We have

implemented the modules into AVS/Express environment, and realized a high throughput

volume rendering system which is well balanced both for data transfer and manipulating

performance.

MPP

File Server
(raw data archive)

Visualization Server
(high speed visualization)Network Switch

data manipulating operation

data
transfer

data
transfer

PIO

Figure 3: Total system of real-time data manipulation with PIO

5

Since the extended PIO system can handle any-to-any parallel data transfer, several

server systems can be combined into a large complex. Figure 3 shows an example of

a �le server and a visualization server combined with data generating engine. Here, a

large amount of raw data are generated in the MPP, and transferred to the �le server

for recording. At the same time, this server creates pixel data for each time slice, then

transfers them to the visualization server for real-time visualization. In this system, all

data are transferred with PIO in parallel and pipelined manner.

4.1.3 Parallel File System

From this year, we have started to develop another application based on PIO, named PFS

(Parallel File System). PFS provides a logical view of single �le image accessed by parallel

processes in SPMD programs for domain decomposition manner. A programmer does not

have to be conscious of individual �le names nor their location on the �le system. PFS

library routines automatically generate an individual path names and the best location

to exploit the high-bandwidth data transfer by PIO for remote �le server accessing.

SPMD process Partial data

Logical data image

Parallel processes

Domain decomposed data Distributed disk

Physical data mapping image

Figure 4: Conceptual image of Parallel File System

We have designed a basic API sets of PFS, and now are designing intermediate data

expression and developing several implementations for a couple of systems not only with

PIO but also local parallel I/O system on CP-PACS and COTS cluster system.

4.2 Memory Integrated VLSI Architecture

SCIMA (Software Controlled IntegratedMemory Architecture) is a new VLSI architecture

for high performance computing. In this year, we have developed a detailed simulator,

with which a preliminary performance evaluation of SCIMA has been made, and a pro-

totype of SCIMA compiler.

4.2.1 Overview of SCIMA

Figure 5 shows the schematic view of the proposed architecture SCIMA. In SCIMA,

addressable On-Chip Memory is integrated into the processor chip in addition to ordinary

6

On-Chip SRAM

Cache

MMU

Memory
 (DRAM)

ALU FPU

register

NIA

Network

Figure 5: Overview of SCIMA

cache. We employ SRAM as the On-Chip Memory. Since our target is HPC applications,

the whole data generally cannot reside in On-Chip memory even if DRAM is used. We

put higher priority on the fast access time rather than on large capacity. The main

di�erence between On-Chip Memory and cache is that the location and the replacement

of data are controlled by software explicitly in On-Chip Memory, whereas those of cache

are controlled by hardware implicitly. Cache is still provided to work for irregular data

accesses.

All the address space has a cacheable/uncacheable property. In SCIMA, the On-Chip

Memory space is always handled as uncacheable. Therefore, there is no inclusion relation

between On-Chip Memory and cache.

Data transfer among memory hierarchy. The following two kinds of data accesses

are available:

� register $ On-Chip Memory $ O�-Chip Memory

� register $ cache $ O�-Chip Memory

In order to control data transfer between On-Chip Memory and O�-Chip Memory,

special instructions, page-load and page-store, are newly introduced. These instructions

can specify block-strided data transfer. Using this feature, non-consecutive data on O�-

Chip Memory can be packed and transferred into a consecutive area on On-Chip Memory.

This ability allows e�ective utilization of On-Chip Memory.

4.2.2 Simulator

SCIMA is de�ned as an extension of existing architecture. In this research, MIPS IV is

selected as the base architecture.

It would be preferable to develop an optimized compiler which can handle the architec-

tural extensions. However, since the compiler is still under development, users currently

7

declare the following issues in source programs; which data should be allocated on which

part of On-Chip Memory, and when the data transfer is invoked.

We developed a preprocessor which inserts these user-directed informations into assem-

bly code after the source code is compiled by ordinary MIPS compiler. We also developed

a simulator which can accept the binary object generated by existing MIPS compiler

and interpret the informations inserted by the preprocessor. The simulator emulates the

behavior of SCIMA cycle by cycle.

The simulator assumes that instruction cache always hits and branch prediction is

completely successful. These assumptions are reasonable since time consuming part of

HPC applications consist of regular loop structures. As for data cache, the simulator

supports lock-up free L1 cache only. Out-of-order execution mechanism by reservation

station is also supported.

4.2.3 Compiler

The C compiler exploiting SCIMA is being developed. Based on the commodity C com-

piler, new expressions dedicated to utilizing On-chip Memory are attached.

In order to make good utilization of On-chip Memory, the following two issues are

important. The �rst issue is allocation, that is, which data should be allocated on which

part of On-chip Memory. The second issue is scheduling, that is, when the data transfer

between O�-chip memory and On-chip Memory should be invoked. In this year, we

focus on the second issue. For a given program with poor scheduling of page-load/store

instructions, we developed an algorithm of improving the scheduling quality by using a

software pipelining technique. This automatic software pipelining mechanisms has been

developed as a part of the compiler.

The backend of the compiler has been reformed to generate codes for the SCIMA sim-

ulator, where we have been making performance evaluations. Universe radiation problems

and the common benchmarks such as SPEC have been used for performance evaluations.

The results show the e�ectiveness of both the architecture and the compiler.

4.2.4 Performance Evaluation

In this year, we have evaluated the performance of SCIMA when applied to QCD com-

putations. For major advance of QCD, simulations with the lattice size of 483 � 96 are

necessary. Carrying out such simulations requires a performance of at least 64 TFLOPS.

A moderate implementation would be a parallel computer with 4096 PUs, where each PU

achieves 16GFLOPS and computes a sublattice of a size 63 � 12.

The following is the assumptions common throughout the evaluations.

� number of execution units: integer=4, oating-point (multiply-add)=4, load/store(cache

or On-Chip Memory)=4

8

Table 1: Combination of cache and On-Chip Memory

cache size (associativity) On-Chip Memory size

(a) 2MB(4way) 0MB
(b) 1.5MB(3way) 0.5MB
(c) 1MB(2way) 1MB

� multiply-add operation latency: 4 cycles

� load/store latency: 2 cycle (for both cache and On-Chip Memory)

� throughput of O�-Chip Memory: 8B/cycle

� total on-chip memory (sum of cache and On-Chip Memory) capacity: 2MB

We alter the con�guration of cache and On-Chip Memory in three ways as shown in

Table 1. In case (a) all data are accessed through cache. Two kinds of cache line size, 32B

and 64B, and three kinds of O�-Chip Memory latencies, 40, 10 and 0 cycle, are selected

in the evaluation.

Figure 6 illustrates the execution cycles and their breakdown under each con�guration

for three kinds of O�-Chip Memory latencies and two kinds of cache lines. We break down

the execution cycles into CPU busy time, latency stall, and throughput stall. The total

cycle indicates the execution cycles under a given assumption. The throughput stall

is de�ned as the cycles which can be saved from the total cycles if O�-Chip Memory

bandwidth were in�nite. The latency stall is de�ned as the cycles which can be saved

further if O�-Chip Memory latency were 0 cycle. The CPU busy time is obtained under

the hypothetical assumption in which O�-Chip Memory bandwidth were in�nite and

latency were 0 cycle.

As shown in Figure 6-[A] for the cache line size of 32B, the cases (b) and (c) having

On-Chip memory achieve 2.2 times and 2.0 times higher performance than the case (a)

with cache only, respectively, when the latency is 40 cycle. This is because the data

transfer size from O�-Chip to On-chip Memory is quite large, which leads to a signi�cant

reduction of latency stall.

Changing the cache line size from 32B (Figure 6-[A]) to 64B (Figure 6-[B]), the latency

stall decreases for larger line size. However, the throughput stall slightly increases for the

larger cache line size. This is because more line conicts are likely to occur for larger

cache line size. Therefore, larger cache line sizes do not always bring higher performance.

Considering the future direction of the semiconductor technology, O�-Chip Memory

latency is expected to increase and the relative O�-Chip Memory bandwidth is expected

to decrease. Therefore, it is indispensable to reduce O�-Chip Memory tra�c and to

9

0

5M

10M

15M

20M

25M

30M

35M

ex
ec

ut
io

n
cy

cl
es

(a) (b) (c) (a) (b) (c) (a) (b) (c)

0cycle 10cycle 40cycle

Off-Chip Memory latency

CPU busy time

latency stall

throughput stall

[A] cache line size = 32B

0

5M

10M

15M

20M

25M

30M

35M

ex
ec

ut
io

n
cy

cl
es

(a) (b) (c) (a) (b) (c) (a) (b) (c)

0cycle 10cycle 40cycle

Off-Chip Memory latency

CPU busy time

latency stall

throughput stall

[B] cache line size = 64B

Figure 6: Breakdown of execution cycles

make data transfer size larger. SCIMA achieves high performance by realizing both

requirements.

5 Future Plan

Parallel I/O and Visualization We shall re�ne and complete the parallel I/O and

visualization system developed in the present project. This will include (i) optimization

of PIO performance for each of the wide variety of platforms including MPP, shared

memory workstations and COTS clusters, (ii) further development of PFS into a fully

equipped parallel �le management environment to be used by PIO, and (iii) a total end-

user environment for parallel visualization system that combines �le and visualization

servers for easy data manipulation and exible control of animated visualization.

Memory Integrated VLSI Architecture The simulator will be expanded to handle

detailed characteristics of memory structure including memory interleave and a variety

of DRAM interfaces, with which the SCIMA shall be evaluated for a wide range of real

applications including astrophysics and condensed matter physics.

The SCIMA C compiler shall be further optimized in the backend to show that a

compiler which allows an e�ective usage of SCIMA is possible without expert manual

coding incorporating the SCIMA features. We also plan to develop FORTRAN compiler

for SCIMA in the �nal year.

Finally we plan to design SCIMA at the register transfer level and verify the feasibility

of implementation of SCIMA-based processor with future semiconductor technology.

Next generation MPP for continuous simulation Connecting thousands of SCIMA-

based processors, an MPP system exceeding 100 TFLOPS of peak performance is possible.

10

For such systems designing an interconnection network with high bandwidth and low la-

tency to support inter-processor data transfer is a major issue. We examine a hybrid

network architecture combining electrical connection for local communication and opti-

cal connection for global communication. We will design the best network topology and

methodology for hybrid network as well as node architecture to connect multiple SCIMA

processors in an SMP manner. This will lead to a total design for the next generation

MPP for continuous physical systems.

Heterogeneous Multi-Computer System In the �nal year of the project, we will

realize a uni�ed system which is equipped with both MPPs for continuum simulation

and particle simulation. For this experiment, CP-PACS and Grape-6 systems will be

connected through PIO as high-bandwidth communication channels.

With this integrated system, we aim to solve gravitational radiation-hydrodynamics

in which self-gravity, radiative transfer and multi-dimensional hydrodynamics are self-

consistently treated. This problem is hard to solve either by CP-PACS or Grape-6 alone,

and hence this experiment shall provide a new vision of heterogeneous multi-computer

systems as MPPs for future large-scale scienti�c simulations.

6 Presentations and Publications

6.1 Presentations at International Conferences

[1] M. Kondo, H. Okawara, H. Nakamura, T. Boku, and S. Sakai, \SCIMA: A Novel

Processor Architecture for High Performance Computing", Proceedings of HPC-

Asia 2000, pp.355-360, Beijing, May 2000.

[2] M. Kondo, H. Okawara, H.Nakamura, and T. Boku, \SCIMA: Software Controlled

Integrated Memory Architecture for High Performance Computing", ICCD-2000,

pp.105-111, Austin, September 2000.

[3] H. Nakamura, M. Kondo, and T. Boku, \Software Controlled Recon�gurable On-Chip

Memory for High Performance Computing", 2nd Workshop on Intelligent Memory

Systems (pre-workshop of ASPLOS-IX), Cambridge, November 2000.

[4] T. Yoshi�e, \Recent lattice QCD results from massively parallel computers", Confer-

ence on Computational Physics 2000 \New Challenges for the New Millennium",

Queensland, Australia, December 2000.

6.2 Presentations at Domestic Conferences

[1] M. Matsubara, H. Numa, K. Itakura and T. Boku, \Parallel I/O system on distributed

11

memory parallel processors", Proc. on JSPP2000, pp.75-82, 2000.

[2] K. Itakura, T. Boku and M. Matsubara, \Parallelization of general purpose visualiza-

tion tool AVS/Express and its performance evaluation", IPSJ SIGHPC, HPC-82-31,

pp.179-184, 2000.

[3] H. Okawara, M. Kondo, H. Nakamura, and T. Boku, \Preliminary Performance

Evaluation of New Memory Architecture for High Performance Computing", IPSJ

SIGARC, ARC-136-3, pp.13-18, 2000

[4] N. Hattori, D. Iizuka, S. Sakai and H. Tanaka, \Memory Access Reduction by Inter-

Procedural Register Promotions" 60th IPSJ Annual Conventions, No.5H-4, Vol.1,

March 2000.

[5] N. Hattori, D. Iizuka, S. Sakai and H. Tanaka, \Compiler Support for Load/Store

Pressure", IPSJ SIGHPC, HPC82-19, pp.107-112, August 2000.

[6] M. Nakamura, M. Iwashita, S. Sakai, and H. Tanaka, \Software Optimization Methods

for SCIMA Architecture", IPSJ SIGHPC, HPC-82-20, pp.113-118, 2000

[7] M. Iwamoto, R. Watanabe, M. Kondo, H. Nakamura, and T. Boku, \Performance

Evaluation of SCIMA for NASPB Kernel CG, FT", IPSJ SIGHPC, HPC-83-6,

pp.31-36, 2000

6.3 Journal Papers

[1] M. Matsubara, H. Numa, K. Itakura and T. Boku, \Parallel I/O system on distributed

memory massively parallel processors", IPSJ Transactions on High Performance

Computing Systems, Vol.41, No. SIG 5(HPS 1), pp.58-69, 2000.

[2] K. Kise, S. Sakai and H. Tanaka \Performance Potential of Two-Level Stride Value

Predictor", IPSJ Journal, Vol.41 No.5, pp.1340-1350, May 2000.

[3] H. Nakamura, M. Kondo, H. Okawara, and T. Boku, \SCIMA: A New Architecture for

High Performance Computing", IPSJ Transactions on High Performance Computing

Systems, Vol 41, No. SIG 5(HPS 1), pp.15-27, 2000

[4] CP-PACS Collaboration, A. Ali Khan et al., \Dynamical Quark E�ects on Light

Quark Masses", Phys. Rev. Lett. 85 (2000) 4674.

[5] CP-PACS Collaboration, T. Manke et al., \Sea Quark E�ects on Quarkonia", Phys.

Rev. D62 (2000) 114508.

12

