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HPC for Phylogenetic Tree Inference

D Parallelization of the phylogenetic inference with the non-homogeneous substitution models

Introduction: The nucleotide and amino acid sequences in distantly related species evolve under different evolutionary processes (non-homogeneous

evolution; Fig. 1). Non-homogeneous (NH) models, which allocate

different model parameters on each node of the tree to evaluate, are the Fig. 1: Difference of the evolutionary process of molecular sequences

most efficient approach to reconstruct phylogenetic trees appropriately Homogeneous Evolution Non-Homogeneous Evolution

from real-world sequence datasets. NHML, the one of phylogenetic: ...~ o """V . break point

programs implementing NH models, can tolerate the heterogeneity of
guanine (G) + cytosine (C) content in nucleotide sequences among

lineages and has been generally applied to the analyses of real-world

data. However, the analyses with NHML can be computationally intense

as enormous amount of model parameters need to be optimized. Toward A B C A B

o

applying to large-scale sequence data, we parallelized NHML and same evolutionary process = different evolutionary processes

evaluated its performance on the super cluster in this study.

Methods: We simulated two nucleotide sequence data, i) 66 taxa and 10,000 nucleotide positions, and ii) 130 taxa and 2,500 nucleotide positions,
based on different model trees. Each sequence dataset was subjected to the likelihood calculation of the corresponding model tree with NHML. Data

analyses were run on T2K Tsukuba (~ 16 nodes/256 CPU cores).

, o Fig. 2: Speed-up of the ML calculation of a tree

Results: Two approaches for parallel computing, OpenMP and MPI, were applied into the
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algorithm for the maximum likelihood (ML) calculation of a single tree in NHML. From the = 66 taxa, 10,000 positions =130 taxa, 2,500 positions
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analyses of two simulated sequence data, regardless of the number of taxa and nucleotide 10000

positions, the parallel version of NHML successfully retained good parallel efficiency until using 8000

256 CPU cores (eff >= 0.5; Fig. 2).
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) Phylogenetic position of a newly identified protist, Tsukubamonas globosa,
inferred from a large-scale multigene dataset

Introduction: Tsukubamonas globosa is a recently identified single-cell protist and

considered to provide key information regarding a potentially early-branching eukaryotic ~ Fig. 3: Phylogenetic position of Tsukubamonas globosa
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assemblage called Discoba. However, the phylogenetic position of T. globosa has yet to be
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Results: We conducted massive expressed sequence tag analyses on T. globosa using 454

Oxyrrhis marina
Toxoplasma gondli
Cryptosporidium parvum Alve o I ata
Paramecium caudatum
Tetrahymena pyriformis
Blastocystis hominis

pyrosequencing technology, and prepared a 157-gene dataset including 41,372 amino acid
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discobids (Fig. 3). In particular, T. globosa was branched at the base of the clade of
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euglenozoans and heteroloboseans with high statistical support.

Discussion: Our 157-gene analyses successfully pinpointed the phylogenetic position of T. e i I Discoba
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globosa. As T. globosa was not nested with any of the known discobid subgroups, we can 4 A e .I Fxcavata
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