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    Floating ‐ point operations have round ‐ off errors. These errors may become a critical issue for some applications. 
Especially in large ‐ scale computing, an accumulation of round ‐ off errors may become a more serious problem. Double 
precision accuracy may be insufficient in some cases, and there is a demand for higher precision operations.

    We have implemented triple and quadruple precision Basic Linear Algebra Subprograms (BLAS) subroutines, AXPY (y = αx + y), GEMV 
(y = αAx+βy) and GEMM (C = αAB+βC) on GPUs. For quadruple precision, we used Double ‐ Double (DD) type quadruple precision 
operations (11bits exponent & 104bits significand). On the other hand, we propose Double+Single (D+S) type triple precision floating ‐ point 
format (8bits exponent & 75bits significand) and triple precision operations using DD ‐ operations internally.

    Some level ‐ 1 and 2 BLAS subroutines are memory ‐ bound on the Tesla M2090, not only in single and double, but also 
triple and quadruple precision: the execution time of triple and quadruple precision subroutines is close to only 1.5x and 
2.0x of that of double precision.  For memory ‐ bound operations where double precision is insufficient but quadruple 
precision is not needed, triple precision operations should be used.
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    Hardware is grouped according to a 
hierarchical structure of the algorithm.

    The aim of this research project is to develop numerical software for large-scale eigenvalue 
problems in post-petascale computing environment.  An eigensolver based on contour integral 
(the SS method) has been proposed by Sakurai and Sugiura [3]. This method has a hierarchical 
structure and is suitable for massively parallel supercomputers [2]. Moreover, the SS method 
can be applicable for nonlinear eigenvalue problems [1]. Block Krylov methods [4] improve the 
performance of the method. We are developing software on both Trilinos and PETSc. MATLAB 
version is available at 
http://zpares.cs.tsukuba.ac.jp/ 

Development of Parallel Sparse Eigensolver Package: z ‐ Pares

    Application for band calculation with real 
space density functional theory (RSDFT) [2].
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Performance of SpMV for each value of T
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Algorithm Hardware

Top level

Middle level

Bottom levelBottom level

Band structure of silicon nanowire of 9,924 atoms.
(matrix size = 8,719,488, Number of cores =27,648)
*The results are tentative since they are obtained by early access to 
  the K computer.

    P e r f o r m a n c e  o f  s p a r s e  m a t r i x ‐ v e c t o r  
multiplication (SpMV) on GPUs is highly dependent 
on the structure of the sparse matrix used in the 
computation, the computing environment, and the 
selection of certain parameters.

    We show that the performance achieved using 
kernel SpMV on GPUs for the compressed row 
storage (CRS) format depends greatly on optimal 
selection of a parameter T that is a number of threads 
to compute an output vector element, and we 
propose an efficient algorithm for the automatic 
selection of the optimal parameter.

    CRS ‐ T* that is kernel SpMV for the CRS format 
using automatic parameter selection achieves up to 
approximately 26% improvement over NVIDIA’ s 
CUSPARSE library.
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GEMM
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