University of Tsukuba | Center for Computational Sciences

XcalableMP: Directive-Based Language eXtension for
Scalable and Performance-Aware Parallel Programming

. Overview of XcalableMP

® XcalableMP (XMP) is a PGAS language for distributed memory system

® XMP extends C99 and Fortran 95 with directives, Coarray syntax, and user APls
® XMP supports typical parallelization under global-view programming model
® XMP global-view model enables parallelizing the original sequential code using minimal modification with simple directives,
like OpenMP
® The directives can describe data mapping, work mapping, and inter-node communication
® Many ideas on global-view programming are inherited from High Performance Fortran
® XMP includes Coarray Fortran syntax as local-view programming model
® Coarray syntax in XMP describes one-sided communication
® The important design principle of XMP is performance-awareness
@ All actions of communication and synchronization are taken by directives, different from automatic parallelizing compilers

® The user should be aware of what happens by XMP directives in the execution model on the distributed memory architecture

#define N (10*1024) Laplace Solver
#pragma xmp nodes p(2,2)

#pragma xmp template t(0:N-1, 0:N-1)

#pragma xmp distribute t(BLOCK, BLOCK) onto p
#pragma xmp align [i][j] with t(j, i) :: u, uu
#pragma xmp shadow u[1][1]

Definition of data mapping

B XMP (Multi-threaded, 1 process x 4 threads per CPU)
200 +——

Definition of shadow area and

its width H MPI (Flat-MPI, 4 processes x 1 thread per CPU)

for(k=0; K<TIMES; k++){
#pragma xmp loop (x, y) on t(x, y) threads Parallelization for loop statement
for(y=1; y<N-1; y++)
for(x=1; x<N-1; x++)
ulylix] = uulyl[x];
#pragma xmp reflect (u)
#pragma xmp loop (x, y) on t(x, y) threads
for(y=1; y<N-1; y++)
for(x=1; x<N-1; x++)
uuly]ix] = (uly-1][x] + uly+1][x] + ulyl[x-1] + uly][x+1]) / 4.0;

150

100

Performance (GFLOPS)

Synchronization data only on
shadow area

(%4
o

1 2 4 8 16 32 64 128 256 512

} Number of CPUs

® XMP-dev is an extension of XMP for acceleration devices such as DEVICE (GPU)
G P U S i%l:g;emz[im[;ﬁgg;a[i]n] with t(, i) Vgﬂ #g? !(;inlao;(TE Tg\g;c ?+I?r())p (3 on tG,)

#pragma xmp device allocate a ZNVZN for (5 =0; j < 100; j++) alil[i] = ...;

B R i #pragma xmp gmove
HOSTAEPUY 1t bR = 2l

double b[100][100]; | ! i 7 #pra'gma xmp loop (i, j) on t(j, i)
#pragma xmp align b[i][j] with t(j, 1) m‘ for (i =0; i < 100; i++)
: : [Cro Co for (j =0; j < 100; j++) ... = b[i][i]l;

Template R R

® XMP-dev supports clusters equipped with acceleration devices

® XMP-dev provides directives to describe typical processes of data

parallelism for accelerators such as data allocation, transfer and task

offloading onto devices

® Data distribution and inter-node communication for cluster computing

can be described in XMP-dev

#pragma xmp nodes p(*)

#pragma xmp template t(0:N-1)
#pragma xmp distribute t(block) onto p
#pragma xmp align [i] with t(i) :: a, hb, db Defintion of data mapping
#pragma xmp shadow a[*]

Sample Code

Data Size (Number of Particles)

#pragma xmp device replicate (a) 32k = 4 nodes
#pragma xmp device allocate (db) ® 2 nodes

16k H 1 node
#pragma xmp IOOp on t(l) 0 20 40 60 §0 100 120 140 160 180 200 220 240

for(i=0; i<N; i++) a[i] =i+ 1; Execution on HOST
#pragma xmp reflect (a)

Performance of N-body (Speed-ups)

#pragma xmp device replicate_sync in (a) Data copy Host to DEVICE

~

r#pragma xmp device loop on {(i)
for (i=0; i<N; i++)
db[i] = 0; Execution on DEVICE
for(j=0; j<N; j++) dbli] += a[j];

M 4 nodes
4k

Data Size (Number of Particles)

} M 2 nodes
~ - 2% B 1 node
| |
#p ragma xmp gmove 0 20 40 60 80 100 120 140 160 180 200 220

hb[:] = db[:]; Data copy DEVICE to HOST

Performance of Matrix Multiplication (Speed-ups)

hitp://www.ccs.tsukuba.ac.jp/

