DL

S

N R B T
*High.Rerformance,Computing-Researchws

Center for Computational Sciences, University of Tsukuba
www.ccs.tsukuba.ac.jp

Quadruple Precision BLAS on GPUs

Background

e There is high demand for high precision floating-point operations (e.g. reducing error accumulation in large scale computing)
e Software emulation of high precision operation are extremely computationally complex: it severely limits the performance on most
traditional computer systems
e GPUs have higher peak performance than CPUs, and GPUs are suitable for vector operations
¢ \We expect that the high precision operations of linear algebra on GPUs attain higher performance than that on CPUs

Overview
¢ \We implemented quadruple precision Basic Linear Algebra Subprograms (BLAS) using CUDA for NVIDIA's GPUs

¢ \We used double-double (DD) type quadruple precision operations [Bailey et al.]
® DD-type operations store a quadruple precision value into two double precision floating point values, and emulate quadruple pre
cision operations using double precision operations

Performance

e On GPUs, the quadruple precision
BLAS subroutines are much faster than
that on CPUs

e DDAXPY and DDGEMV are memory-
bound on Tesla C2050. Thus, the ex-
ecution times of DDAXPY and

DDAXPY DDGEMV DDGEMM

=
N
N
(9

[EY
o

N
o

=
Ul

GDDFlops
GDDFlops
GDDFlops

0 T T
1.024E+03 1.024E+04 1.024E+05 1.024E+06 1.024E+07 0 2000 4000

N N=M
=@ Tes|lg C2050 === GeForce GTX480 =g X oon E5630*2

1000 1500 2000
N=M=K
**®e e+ Tasla C2050 (PCle) ©*®e e GeForce GTX480 (PCle)

* “DDFlops” means DD-type floating-point operations per second

6000 8000 500

DDGEMV are approx. 2 times more
than that of DAXPY and DGEMV on
CUBLAS 4.0, respectively

CPU/GPU Hybrid Co-Working With Easy Programming

Execution time of GPU/CPU load distribution (N=10240)

0.07

®* Motivation: GPU clusters are generally used in the style of “function acceleration” to dis-
patch heavy computation parts to GPU and CPU only takes light-weight computation and
MP| communication. To exploit the full performance of GPU and CPU in each node, it is re-
quired to distribute the computation load to both of them in well-balanced manner.

¢ Experiments: For a simple N-body computation in astrophysics, the computation load is
distributed to multi-core CPU and GPU in every time step. “Ratio” is the fraction of compu-
tation load for GPU. It is shown that the best balance depends on the problem size where)
I/O Ioad IS In O(N) Whlle ComDUtat|On |Oad IS In O(Nz) Execution time of GPU/CPU load distribution (N=102400)
e Solution: It is required to make a good balance between GPU and CPU loads, and it is
difficult to control statically. To avoid programming difficulty, we combine XcalableMP-dev
language and StarPU process management system, which are developed in University of
Tsukuba and INRIA Bordeaux, respectively. The variables and loops indicated by special
directives are automatically mapped on data pool and dynamic processes in StarPU by
XcalableMP-dev compiller.

* This research is supported by Japan-France joint project named “Framework and Programming for Post Petascale Computing” by JST-ANR.

Large Eddy Simulation on GPU

0.06

0.05

0.04

0.03

0.02 4

Execution time [sec]

- - N
o 4] o

Execution time [sec]

P
3

o

LES (Large Eddy Simulation) on city-level climate simu-
lation with various physics and chemistry process is a
computation intensive problem suitable for GPU comput-
ing. We are developing a very high resolution of LES
code for large scale GPU clusters such as HA-PACS, re-
ducing CPU-GPU communication overhead to merge
small functions into larger GPU kernel function. Cur-
rently, all the functions except Poisson solver which con-
sumes approximately 30% of entire computation, are
merged into just one function to exploit high perfor-
mance. Implementing additional features for building
structure analysis and other physical reactions, we will
complete the implementation of “city model” LES with
fine resolution driven by large-scale parallel GPU com-
putations.

Testing environment

Intel Xeon E5630 2.53GHz 4cores x 2

CPU
RAM
GPU

OS
Compiler

DDR3 SDRAM 1066MHz 4GB x 6

NVIDIA Tesla M2050 1.15GHz

CentOS Linux release 6.0 (Final)

GNU Fortran (GCC) 4.4.4
nvcc 4.0 (-arch sm_20) for GPU code

GDDR 5 SDRAM 1.55GHz 3GB (ECC on)

a

o

o
©

o
o

Exec. Time (sec)
e

o
S

o

Exec. time (sec)

'CPU
4 = GPU
1] r F
0 T T T
102x102 112x112 122x122 132x132

Entire computation speedup (tentative) without Poisson Eq. solver

102x102 112x112 122x122 132%x]32

i

Problem size

102%x102 112%112 122%x122
Problem size

132x132

Execution time
comparison on
CPU and GPU
including /O (left)
and breakdown of
GPU computation
(right), for “cell
surface gradient
calculation” (size
is shown as grid
size of X x Y
where
Z-dimension size
is fixed)

GPU->CPU comm.
CPU->GPU comm.

GPU pure calculation

