DEA, : : : :
ﬁ@§ @ Center for Computational Sciences, University of Tsukuba

www.ccs.tsukuba.ac.jp

XcalableMP : Directive-Based Language eXtention for
Scalable'and Performance-Aware Parallel Programming

Overview of XcalableMP E

® XcalableMP (XMP) is a PGAS language for distributed memory system.
® XMP extends C99 and Fortran 95 with directives, Co-array syntax, and user APIs.
® XMP supports typical parallelization under global-view programming model.
e XMP global-view model enables parallelizing the original sequential code using minimal modification
with simple directives, like OpenMP.
e The directives can describe data distribution, work mapping, and inter-node communication for clusters.
e Many ideas on “global-view” programming are inherited from High Performance Fortran.
XMP includes Co-arrray Fortran syntax as local-view programming model
e Co-array syntax in XMP describes one-sided communication between nodes.
The important design principle of XMP is performance-awareness.
e All actions of communication and synchronization are taken by directives, different from automatic paralleliz-
iIng compilers.
®* The user should be aware of what happens by XMP directives in the execution model on the distributed me-
mory architecture.

#pragma xmp nodes p(2, 2)

#pragma xmp template t(0:(1024*10)-1, 0:(1024*10)-1)
#pragma xmp distribute t(BLOCK, BLOCK) onto p
#pragma xmp align [i][j] with t(j, i) :: u, uu

#pragma xmp shadow u[1][1] m XMP (Multi-threaded, 1 process x 4 threads per CPU)

s B MPI (Flat-MPI, 4 processes x 1 thread per CPU)
for (k =0; k < N; k++) {

#pragma xmp reflect (u)
#pragma xmp loop (x, y) on t(x, y) threads
for (y = 1; y < SIZE-1; y++)
for (x =1; x < SIZE-1; x++)
uulylx] = (uly-11[x] + uly+1][x] + uly][x-1] + u[y][x+1]) / 4.0;
H#pragma xmp loop (x, y) on t(x, y) threads
for (y = 1; y < SIZE-1; y++) .
for (x = 1; x < SIZE-1; x++) | | | - — ﬂ | |
uly][x] = uuly][x]; 8 64
} code example: Laplace Solver Number of CPUs

XcalableMP Acceleration Device Extension (XMP-dev)

® XMP-dev is an extension of XMP for acceleration devices such as DEVICE (GPV)
IZEVZE #pragma xmp device loop (i, j) on t(j, i)

double a[100][100];
G P JS #pragma xmp align a[il[j] with t(j, i) P2 for (i =0; i < 100; i++)

#pragma xmp device aIIocate a m for G = 0 j < 100; j++) a[il[j] =

® XMP-dev supports clusters equipped with acceleration devices. HOST(CP) | el _[&m

® XMP-dev provides directives to describe typical processes of data i‘;“;"gem??,?g[;?;’ib[émév.thtq) 'ﬂ #f%rf?m”mp'f&?‘ﬂ)°"t° :
parallelism for accelerators such as data allocation, transfer and Template | o e
task offloading onto devices.

® Data distribution and inter-node communication for cluster comput-

Ing can be described in XMP-dev.

Performance (GFLOPS)
[EY
o
o

d 41 4 i
pragma xmp nodes p(4, 4) Execution Model of XMP-dev

N
(%))
()]
~

#pragma xmp align [i] with t(i) :: a, hb, db code example of XMP-dev
#pragma xmp shadow a[*]

#pragma xmp device replicate (a)

#pragma xmp device allocate (db)

¥ 4 nodes

int a[N], hb[N], db[N];
void main(void) { H 2 nodes

(#toragma xmp loop on t(i) = - , ¥ 1node
S . A xecution | ! | ; | | | | | . _ _
for (inti=0;i<N;i++)al] =i+1; HOST (CPU) 60 80 100 120 140 160 180 200 220
fp ragma xmp reflect a Performance of N-body (Speed-ups)

r#pragma xmp device replicate_sync in (a)
- HOST to DEVICE

Data Size (Number of Particles)
g
-~

o
N
o
FoS
o

=
o
.

(#pragma xmp device loop on t(i)
for (inti=0;i<N;i++) { :

for (int] = 0; j < N; j++) dbl[i] += ajl; DEVICE(GRU)
\J Y,

[#pragma xmp gmove]
hb[:] = db[:]; DEVICE to HOST 40 60 80 100 120 1z.lo 150 150 260

} Performance of Matrix Multiplication (Speed-ups)

M 4 nodes
M 2 nodes
® 1 node

N
=

Data Size (Number of Particles)
[*)]

o
)
o

