DL : : _ :
ﬁ@@ @ Center for Computational Sciences, University of Tsukuba

www.ccs.tsukuba.ac.jp

rHigh-Performance,Computing:Researchem

High Precision BLAS on GPUs
® There is high demand for high precision computations. |

e.g. reducing error accumulation in large scale computing e GPU: NVIDIATe_sIa C2050 (Fermi architecture, ECC_—disabIed)
® Since high precision computations are computationally ® CPU: Intel Core i7 920 (2.67 GHz, Quad-Core, HT-disabled)

o e Data: N=1,024,000
complex, most traditional processors cannot perform them
fficientl DD-type Quadruple QD-type Octuple Arbitrary (1024 bits)
enicien y msec msec msec

® It's possible to quickly execute high precision BLAS 60 | 160 1497
operations on GPUs. ' 50' 120

® \We implemented some BLAS functions on GPUs and compared N 100

their performance to the same functions on CPUs. . o
20 -

S 40
10 - 20

Overview ; | | 0 ' | 0

e Implemented using CUDA for NVIDIA's GPUs

o Supports three type of high precision computations Performance: GEMM

= 1. Double-double (DD) type quadruple precision - |
e GPU: NVIDIA Tesla C2050 (Fermi architecture, ECC-disabled)

> WBlelis Sighliezle) (@Rt S et elels) . * CPU: Intel Core i7 920 (2.67 GHz, Quad-Core, HT-disabled)
- Stores quadruple precision values into two double precision o Data: N=M=K=1,024

ﬂoatlng pomt values o DD-type Quadruple QD-type Octuple Arbitrary (1024 bits)
= 2. Quad-double (QD) type octuple precision sec sec sec

- 212 bits significand (approx. 64 decimal digits) 43 e | 160

_ 140
- Stores octuple precision values into four double precision >0 120

. . 40 -
floating point values o 128

= 3. Arbitrary precision (variable length) = 60

* GNU MP compatible . 40

- Stores high precision values into a format defined by — — 0 — — 28

integer values

154.7

FFTE: A High-Performance FFT Library

-FTE is a Fortran subroutine library for computing the Fast Fourier Transform (FFT) in one or more dimensions.
t includes complex, mixed-radix and parallel transforms.
-FTE is typically faster than other publicly-available FFT implementations, and is even competitive with vendor-tuned libraries.

% Hp

CCh
alle |
* High speed —1ge bel‘lch , » Many FFT routines work well when data sets fit into cache.
Mark
= Supports Intel's SSE2/SSE3J instructions. f e When the problem size exceeds the cache size however, the

* Parallel transforms performance of these FFT routines decreases dramatically.

= Shared / Distributed memory parallel computers e Some previously presented six-step FFT algorithms require
(OpenMP, MPIl and OpenMP + MPI) = Two multicolumn FFTs.
* High portability » Three data transpositions: these are the chief bottlenecks
= Fortran77 + OpenMP + MPI In cache-based processors.
= Intel’s intrinsics for SSE2/SSE3 instructions. e \WWe have combined the multicolumn FFTs and transpositions
e HPC Challenge Benchmark to reduce the number of cache misses.

= FFTE's 1-D parallel FFT routine has been incorporated

into the HPC Challenge (HPCC) benchmark. P —T
= N1 x N2 x N3 =224 x P

= FFTE 4.0 (x87)
e Performance e Machines:

s FFTE 4.0 (SSE3)
= One goal for large FFTs is to minimize the number of * Xeon EM64T 3.0 GHz
cache misses. = Gigabit Ethernet

« Ease of use: routine interfaces * 1024 MB DDR2/400

= Similar to sequential SGI SCSL or Intel MKL routines
o Portability

= Communication: MPI

= Computation: Fortran77 + OpenMP N

Performance [GFLOPS]
o © N

w

o

16

