&@%% @ Center for Computational Sciences, University of Tsukuba

www.ccs.tsukuba.ac.jp
el | X ez MP
XcalableMP : Directive-Based Language eXtention for
Scalable and Performance-Aware Parallel Programming ™

What is XcalableMP? |r

Although MPI is the de facto standard for parallel programming on distributed memory systems, writing
MPI| programs is often a time-consuming and complicated process. XcalableMP is a directive-based lan-
guage extension which allows users to develop parallel programs for distributed memory systems easily
and allows them to tune the performance by having minimal and simple notations. The specification has
been being designed by the XcalableMP Specification Working Group which consists of members from
academia, research labs and industries in Japan.

® XcalableMP supports typical parallelization based on the data parallel paradigm and work map-
ping under the “global-view” programming model, and enables parallelizing the original sequential
code with minimal modification by using simple directives, like OpenMP. Many ideas on “global-
view” programming are inherited from HPF (High Performance Fortran).
The important design principle of XcalableMP is “performance-awareness”. All actions of commu-
nication and synchronization are taken by directives, instead of using automatic parallelizing com-
pilers. The user should be aware of what XcalableMP directives are doing in the execution model
on the distributed memory architecture.

® XcalableMP also includes CAF-like PGAS (Partitioned Global Address Space) features such as
“local-view” programming.

® XcalableMP APls are defined in C and Fortran 95.

Code Examples (Laplace Equation Solver)

| | ®per Node(XMP)
m per Node(MPI)

T m per Socket(XMP)
1| m per Socket(MPI)
m per Core(XMP)
1= per Core(MPI)

Performance Evaluation using 64 T2K Nodes
(Each node has 4 quad-core processors)

32 64 128 256 512 1024
Number of MPI Procs

Q

The parallel version of the Laplace equation solver can be
easily written by using shadow pragmas in XMP. The perfor-
mance is equivalent (or even better in some cases) to the MPI
version.

Performance of XcalableMP Codes

IHPF$ processsors p(XPROCS, YPROCS) do k = 1, niter ' double precision u(0:x_data_size+1, 0:y_data_size+1)[XPROCS, *]

IHPF$ template t(XSIZE, YSIZE) doy= 1,y data_size double precision uu(0:x_data_size+1, O:y_data_size+1)[XPROCS, *]

IHPF$ distribute t(block, block) onto p
IHPF$ align (i,j) with t(i,j) :: u, uu
IHPF$ shadow uu(1,1)

do k = 1, niter
IHPF$ independent
doy=2, YSIZE - 1
IHPF$ on home(t(:, y))
do x =2, XSIZE - 1
IHPF$ on home(t(x, y))
uu(x,y) = u(x,y)
end do
end do
IHPF$ reflect uu
IHPF$ independent
doy=2, YSIZE - 1
IHPF$ on home(t(:, y))
do x =2, XSIZE - 1
IHPF$ on home(t(x, y))

u(x,y) = (uu(x-1,y) + uu(x+1,y) + uu(x,y-1) + uu(x,y+1)) /4.0

end do
end do
end do

do x =1, x_data_size
uu(x,y) = u(x,y)

end do
end do
if (x_rank.ne.0)

call mpi_send(uu x_rank—1, . ..)
end if
if (x_rank.ne.(x_comm_size-1))

call mpi_recv(uu
end if
if (x_rank.ne.(x_comm_size-1))

call mpi_send(uu x_rank+1, . ..)
end if
if (x_rank.ne.0)

call mpi_recv(uu
end if

doy=1,y data_size
dox =1, x_data_size

u(x,y) = (uu(x-1,y) + uu(x+1,y) + uu(x,y-1) + uu(x,y+1))/4.0

end do
end do
end do

doy=1,y data_size
do x =1, x_data_size
uu(x,y) = u(x,y)
end do
end do

u(x_size+1, 1:y_size)[x_rank-1, y_rank]

if (x_rank.ne.XPROCS)

uu(x_size+1,1:y_size) = uu(0, 1:y_size)[x_rank+1, y_rank]
end if
if (y_rank.ne.1)

uu(1:x_size, 0) = uu(1:x_size, y_size+1)[x_rank, y_rank-1]
end if
if (y_rank.ne.YPROCS)

uu(1:x_size, y_size+1) = uu(1:x_size, 0)[x_rank, y_rank+1]

d if

sync all
doy=1,y data_size
dox =1, x_data_size
u(x,y) = (uu(x-1,y) + uu(x+1,y) + uu(x,y-1) + uu(x,y+1))/4.0
end do
end do
end do

This research is carried out as a part of “Seamless and Highly-productive Parallel Programming Environment for High-
performance computing” project funded by Ministry of Education, Culture, Sports, Science and Technology, JAPAN. WWW-Xcalablemp.Org

