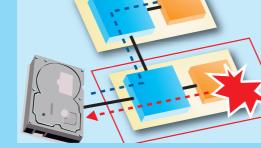


Power-aware, Dependable, and High-Performance Communication Link Using PCI Express: PEARL

Concepts

Although parallel and distributed systems can provide some redundancy, they can only be truly dependable if the communications in such systems is also reliable.

We have created a high performance, power-aware network with redundancy for parallel and distributed systems ranging from high-end embedded systems to small scale HPC clusters.


PEARL:

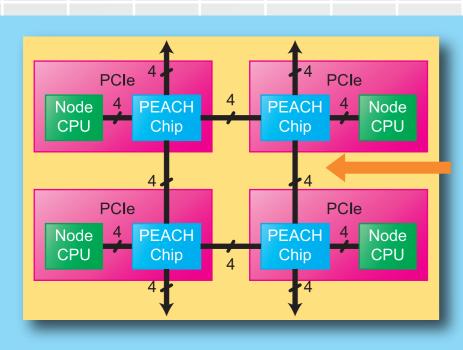
PCI Express Adaptive and Reliable Link PEACH chip:

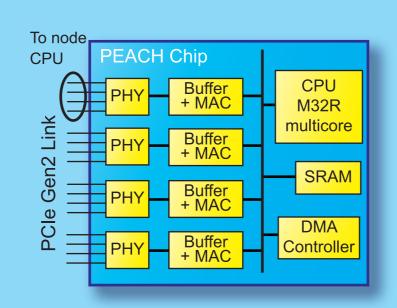
PCI Express Adaptive Communication Hub

- Features high bandwidth and low power consumption using PCI Express® technology while still adhering to the PCIe standard.
- Intelligent control through use of an embedded processor for dependability and power-awareness.

(a) Fault link recovery

(b) Device fail-over


Dependability facilities of PEARL


PEARL: Communication Link Based on PCI Express Technology

- Direct connection using PCI Express between nodes
 - Uses PCIe external cables with a range of several meters to connect between nodes.
- PCIe Link connects between Root Complex (RC) and Endpoint (EP).
 - ► All PCIe ports are RC/EP switchable during initialization.
- Any PCIe ready device can be directly attached to PEARL.

Features

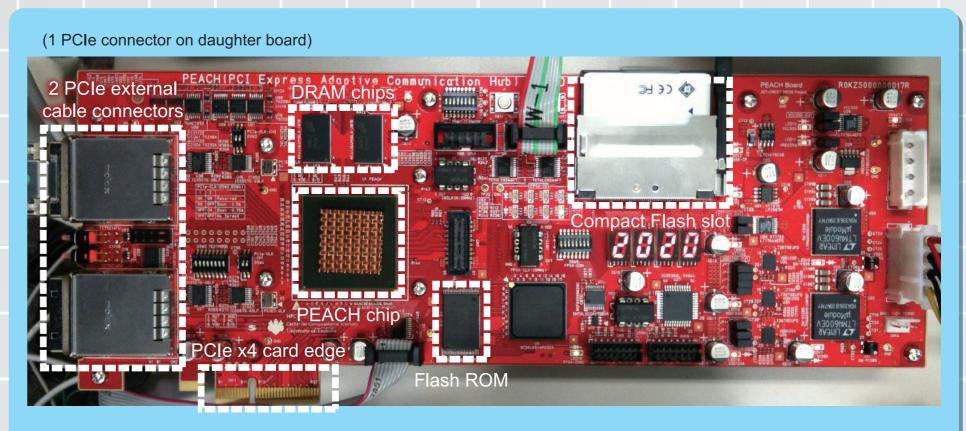
- High-Performance
- 20 Gbps, 2 Gbyte/s (Theoretical Peak) = InfiniBand® DDR 4x
- Energy efficient and Power-aware:
- Consumes less power than conventional networks
- Saves power by reducing the number of lanes and transfer rate
- Dependability
- Error detection, flow control, retransmission by PCIe protocol
- Fault tolerance through use of detour routing
- Embedded processor monitors system and detects faults.

Overview of PEARL system

Block diagram of a PEACH chip

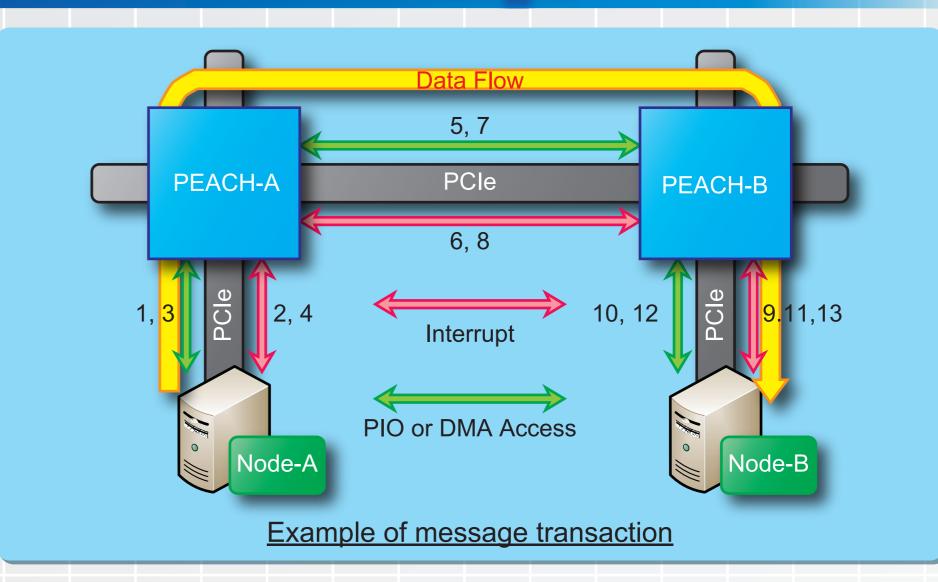
Selection of the number of lanes and lane speed (Power consumption ratio obtained by 65 nm PCIe Gen2 PHY test chip)

# of lanes Lane speed	x1	x2	x4
2.5 GHz	2.5 Gbps (21)	5 Gbps (38)	10 Gbps (75)
5 GHz	5 Gbps (28)	10 Gbps (50)	20 Gbps (100)


PEACH Chip & Board

Overview of PEACH Chip

- Embedded CPU: M32R (Renesas Electronics, 4 cores, SMP)
- PCI Express Gen 2, x4 lanes (20 Gbps) 4 ports
- Max Payload Size: 1 Kbytes


Overview of PEACH Board

- PCI Express x4 host adapter board
- 3 PCI Express external cable ports
- Operates independently of host system.

Photograph of PEACH board

Communication Example

Node-A

- 1. Write header to PEACH-A
- 2. Interrupt for "DMA read ready" to PEACH-A

PEACH-A

- 3. Copy Payload from Node-A via DMA
- 4. Interrupt for "DMA read done" to Node-A
- 5. Write header to PEACH-B
- 6. Interrupt for "DMA read ready" to PEACH-B

PEACH-B

- 7. Copy payload from PEACH-A via DMA
- 8. Interrupt for "DMA read done" to PEACH-A

9. Interrupt for "Read data ready" to Node-B

Node-B

- 10. Read Header from PEACH-B
- 11. Interrupt for "DMA write ready" to PEACH-B

PEACH-B

- 12. Copy payload to Node-B via DMA
- 13. Interrupt for "DMA write done" to Node-B

Acknowledgements

This project is sponsored by the Japan Science and Technology Core Research for Evolutional Science and Technology(JST/CREST) under the "Computational Platform for Power-aware and Reliable Embedded Parallel Processing Systems" program in the area of "Dependable Embedded Operating Systems for Practical Use"(Oct. 2006 - Nov. 2011)