Center for Computational Sciences, University of Tsukuba

www.ccs.tsukuba.ac.jp

—
*High-Rerformance,Computing:Researchwm

D-Cloud: Large-scale Test Farm using Cloud-computing System

® Background & Objective

B |n order to reduce potential factors causing failure, software
components should be tested carefully and exhausively

B There are many demands for environments to perform
many tests rapidly

® D-Cloud s ...

B An environment to helps process to improve software
dependabilitye

B To accelerate testing process through parallel test execution
utilizing large computation resource managed by Cloud
computing system
» Eucalyptus (like Amazon EC2, Open-source) is used

B VM fault-injection facility(Fault VM/QEMU) is available for
testing HA software

Testing procedure

Controller node ]
Ask to build

test environment

2

Distribute

Image — ’ [/
_— %s |

Make
test scenario

D-Cloud [E
frontend [

o
O@@O

Execute test script
Inject faults
Get memory snapshot

data of te
nsfer h
t data of test Snapsnho
ory snapshot

Transfer data
Setup test env

Architecture |

® D-Cloud consists of multiple
compute nodes which executes
tests and the master node which
manages them

Compute Nodes

® The master node deploys VM o | web Cloud -

. Portal ontroller
instances on compute nodes N Contol
on demand / w};weﬂe

® Users access D-cloud through
web portal offered by the master
node

Configuration file for testing

e D-Cloud executes a series of tests following a configuration file
® An example of a configuration file is shown below

= |n this example, a fault is injected 100sec after booting, then the test is halted 200sec
after the injection

multi-link fault-torerant NW

RI2N :
developed on HPCS lab

server client

System Definition

<systemDefinition>
<systemconf>
<name>systemA</name>
<host>
<hostname>server</hostname>
<machinename>server</machinename>
<config>servconf</config>
</host>
<host>
<hostname>client</hostname>
<machinename>client</machinename>
<config>clientconf</config>
</host>
</systemconf>
</systemDefinition>

Machine Definition

<machineDefinition>
<machine>
<name>server</name>
<cpu>1</ cpu>
<mem>500000</mem>
<nic>3</nic>
<id>emi-1F8A1210</id>
</machine>
<machine>
<name>client</name>
<cpu>1</cpu>
<mem>500000</mem>
<nic>3</nic>
<id>emi-178911E1</id>
</machine>
</machineDefinition>

Injection Def & Scenario

<injectionDefinition>
<injection>
<name>injectionA</name>
<fault>
<location>network</location>
<target>ethO</target>
<kind>loss</kind>
<time>20</time>
</fault>
</injection>
</injectionDefinition>
<testDescription>
<run>
<name>testA</name>
<systemname>systemA</systemname>
<halt when="300">down</halt>
<script>
<on>client1</on>
<putFile>test.sh</putFile>
<exec>test.sh</exec>
<inject when="100">injectionA</inject>
</script>
</run>
</testDescription>

FFTE: A High-Performance FFT Library

e FFTE is a Fortran subroutine library for computing the Fast Fourier Transform (FFT) in one or more dimensions.
@ |t includes complex, mixed-radix and parallel transforms.
® FFTE is typically faster than other publically-available FFT implementations, and is even competitive with

vendor-tuned libraries.

* High speed
= Supports Intel's SSE2/SSE3 instructions.
e Parallel transforms
= Shared / Distributed memory parallel computers
(OpenMP, MPI and OpenMP + MPI)
* High portability
= Fortran77 + OpenMP + MPI
= Intel’s intrinsics for SSE2/SSEJ instructions.

e HPC Challenge Benchmark
 FFTE's 1-D parallel FFT routine has been incorporated

into the HPC Challenge (HPCC) benchmark.

W Hpe
Challenge benchmark

* Performance
= One goal for large FFTs is to minimize the number of
cache misses.
e Ease of use: routine interfaces
= Similar to sequential SGI SCSL or Intel MKL routines
e Portability
= Communication: MPI
= Computation: Fortran77 + OpenMP

Approach

| Many FFT routines work well when data sets fit into a

cache.
\When a problem size exceeds the cache size, however, the
performance of these FFT routines decreases dramatically.

e Some previously presented six-step FFT algorithms require
= Two multicolumn FFTs.
* Three data transpositions.
The chief bottlenecks in cache-based processors.
*\WWe combine the multicolumn FFTs and transpositions to

reduce the number of cache misses.

Pertormance of FFTE 4.0

15
s FFTW 2.1.5 (SSE2)

s FFTE 4.0 (x87)
mm=== FFTE 4.0 (SSE3)

N

Data:
N1 x N2x N3 =224 x P
Machines:
Xeon EM64T 3.0GHz
Gigabit Ethernet
1024 MB DDR?2/400

O

Performance [GFLOPS]
(0N

w

16
Number of CPUs




