
P
er

fo
rm

an
ce

 [G
FL

O
P

S
]

Number of CPUs

0

3

6

9

12

15
FFTW 2.1.5 (SSE2)
FFTE 4.0 (x87)
FFTE 4.0 (SSE3)

32168421

Data:
 N1 x N2 x N3 = 2^24 x P
Machines:
 Xeon EM64T 3.0GHz
 Gigabit Ethernet
 1024 MB DDR2/400

Performance of FFTE 4.0

Approach

Many FFT routines work well when data sets fit into a
cache.
When a problem size exceeds the cache size, however, the
performance of these FFT routines decreases dramatically.
Some previously presented six-step FFT algorithms require

Two multicolumn FFTs.
Three data transpositions.

The chief bottlenecks in cache-based processors.
We combine the multicolumn FFTs and transpositions to
reduce the number of cache misses.

Design

Performance
One goal for large FFTs is to minimize the number of
cache misses.

Ease of use: routine interfaces
Similar to sequential SGI SCSL or Intel MKL routines

Portability
Communication: MPI
Computation: Fortran77 + OpenMP

Features

High speed
Supports Intel’s SSE2/SSE3 instructions.

Parallel transforms
Shared / Distributed memory parallel computers
 (OpenMP, MPI and OpenMP + MPI)

High portability
Fortran77 + OpenMP + MPI
Intel’s intrinsics for SSE2/SSE3 instructions.

HPC Challenge Benchmark
FFTE’s 1-D parallel FFT routine has been incorporated
into the HPC Challenge (HPCC) benchmark.

HPC Challenge benchmark

FFTE is a Fortran subroutine library for computing the Fast Fourier Transform (FFT) in one or more dimensions.
It includes complex, mixed-radix and parallel transforms.
FFTE is typically faster than other publically-available FFT implementations, and is even competitive with
vendor-tuned libraries.

FFTE: A High-Performance FFT Library

Result: Power profile (CI-Runtime)

The execution time has increased by 4.49% (keeping deadline δ=0.05)
Overall energy consumption has increased by 1.21% while δ=0.05.
(CPU energy consumption has decreased by 4.01%)
Overall energy consumption was increased where static power
consumption is large

AMD Opteron148, DDR-SDRAM 1GB, GbE, NPB-MG CLASS=C 2 iterations, 16 nodes

0

200

400

600

800

1000

1200

1400

1600

time [sec]

po
w

er
 [W

]

δ = 0.00
δ = 0.01
δ = 0.02
δ = 0.05

Lower voltage and frequency
(Long comm1p phase)

: Defined region

δ=0.05
rprj3

interp

resid

comm1p

psinv

comm1p comm1p

residcomm1p

δ=0.00

21.7 21.9 22.1 22.3 22.5 22.7 22.9 23.1 23.3 23.5 23.7

Flowchart of CI-Runtime DVFS method

#include <stdio.h>
int main(void)
{

int i, s = 0;
for (i=0; i<100; i++)

if (i%2 == 0)
s += i;

printf(”s = %d\n”, s);
return 0;

}

execute
Benchmark

time
0.00
0.10
0.20
0.30
...

file: line
a.out: 4
a.out: 6
a.out: 6
a.out: 5

value
50

105
100
95

Benchmark
program

AST

execution data

Block
FOR

Block
IF

Block
THEN
Block
ELSE

Statement
s += i; BlockList

Block Statement
printf(”s=%d\n”, s);

characteristics of the
program is examined

power optimization
(Runtime DVFS Control)

convert to AST
(Abstract Syntax Tree)

to allow easy program analysis

β-adaptation was used
select lower voltage and
frequency while keeping
deadline δ, that was given
by the user

A comparison between each DVFS method

defining program region
should have similar characteristics
should not drastically change the program characteristics

a kind of runtime DVFS control algorithm
select the gear using relationship between
frequency and actual performance

use only the performance information
don’t use the power consumption data

β-adaptation [Chen et.al. 2005]

need the profile of each
available gear for each region

selecting the gears
before execution

yes

defining the region,
obtaining the profile

may achieve the best
energy reduction using profile

best
Static DVFS (profile-based)

runtime

defining the region

yes

better

CI-Runtime DVFS

nothing

no (interrupt-based)

good (sometimes bad)
IB-Runtime DVFS

may not achieve good energy
reduction between a calc. and

non-calc. phases

no pre-execution

runtime

DVFS control

Code Instrumented
(defining the region)

User’s cost

Energy reduction

Runtime DVFS Control with instrumented code
Code-Instrumented (CI-) Runtime DVFS control

manages the voltages and frequencies at the instrumented
code at runtime
achieves better energy reduction than Interrupt-based (IB-)
Runtime DVFS control method

avoid the fluctuation of performance by program characteristics
is easier to use than static (profile-based) DVFS method

not require data for optimization such as profile
can use the already proposed Runtime DVFS optimization

www.ccs.tsukuba.ac.jp
Center for Computational Sciences, University of Tsukuba

High Performance Computing Research

