“?’,%% @ Center for Computational Sciences, University of Tsukuba
@ www.ccs.tsukuba.ac.jp

*HighsRerformance,Computing-Researches

Runtime DVFS Control with instrumented code
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A comparison between each DVFS method
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B-adaptation [Chen et.al. 2005] ' selecting the gears Th tion 4 has i d by 4.49% (k na deadline 5=0.05
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S —— before execution e execution time has increased by 4.49% (keeping deadline 5=0.05)

DVFS control a select the gear using relationship between = Overall energy consumption has increased by 1.21% while 5=0.05.
r.‘f‘ﬁ the pr?ﬁle theaCh. (CPU energy consumption has decreased by 4.01%)
» use only the performance information AVERELIS ST NG LD e I t; . d wh tati
 dor’tuso the power consumption dafa verall energy consumption was increased where static power
. consumption is large

FFTE: A High-Performance FFT Library |

e FFTE Is a Fortran subroutine library for computing the Fast Fourier Transform (FFT) in one or more dimensions.
@ |t includes complex, mixed-radix and parallel transforms.
® FFTE is typically faster than other publically-available FFT implementations, and is even competitive with

vendor-tuned libraries.
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* High speed ge benchmark ' Many FFT routines work well when data sets fit into a
= Supports Intel's SSE2/SSEJ instructions. cache.

e Parallel transforms \When a problem size exceeds the cache size, however, the
» Shared / Distributed memory parallel computers performance of these FFT routines decreases dramatically.

(OpenMP, MPI and OpenMP + MPI) » Some previously presented six-step FFT algorithms require

* High portability * Two multicolumn FFTs.
= Fortran77 + OpenMP + MPI * Three data transpositions.

= Intel’s intrinsics for SSE2/SSESJ instructions. The chief bottlenecks in cache-based processors.

* HPC Challenge Benchmark *\We combine the multicolumn FFTs and transpositions to
= FFTE's 1-D parallel FFT routine has been incorporated reduce the number of cache misses.

into the HPC Challenge (HPCC) benchmark.
Performance of FFTE 4.0
> e FFTW 2.1.5 (SSE2)

ms FETE 4.0 (x87)
e Performance Data: mem FFTE 4.0 (SSE3)
= One goal for large FFTs is to minimize the number of N1 x N2 x N3 = 2424 x P
cache misses. Machines:
e Ease of use: routine interfaces Xeon EM64T 3.0GHz
= Similar to sequential SGI SCSL or Intel MKL routines Gigabit Ethernet
* Portability 1024 MB DDR2/400
= Communication: MPI
= Computation: Fortran77 + OpenMP
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