“?’,%% @ Center for Computational Sciences, University of Tsukuba
@ www.ccs.tsukuba.ac.jp

*HighsRerformance,Computing-Researches

Runtime DVFS Control with instrumented code

e Code-Instrumented (CI-) Runtime DVFS control Flowchart of CI-Runtime DVFS method
® manages the voltages and frequencies at the instrumented characteristics of the

program is examined time file: line value :
code at runtime 000 acuid 50 defined program power optimizetion
0.10 a.out: 6 105 i
Bee:cer::r:’;erk 020 aout 6 100 (insert the code) (Runtime DVFS Control)

m achieves better energy reduction than Interrupt-based (IB-) 030 ey
Runtlme DVFS COntrOl methOd 2@ ﬁ frequency while keeping

select lower voltage and
. program AST deadline 5, that was given
» avoid the fluctuation of performance by program characteristics vl) by the user

Block Block , Statement

. . . g b e BlockListi) FoR THEN s+=i;
m IS easier to use than static (profile-based) DVFS method o 1 10, 44 K \ o

if (%2 == 0) ELSE

» not require data for optimization such as profile el i convertto AST | VBOSK|, Sitemen

_’
return 0; Abstract Syntax Tree)

» can use the already proposed Runtime DVFS optimization }

A comparison between each DVFS method

IB-Runtime DVFS Cl-Runtime DVFS Static DVFS (profile-based) 1600
good (sometimes bad) best 1400

printf("s=%d\n”, s);

; may not achieve good energy | . 1200 m - -
Energy redUCtlon Y & Y better may achieve the best 4 \’“/\Nnterp commip commip commip \’/JW

reduction between a calc. and energy reduction using profil 1000 @ﬁ comm1p “@”@”@

non-calc. phases
defining the region, 800
obtaining the profile 500 {ower voltage and frequenC\yJ

(Long comm1p phase)

6=0.05

User’s cost ' defining the region

no (interrupt-based) 400

0=0.01
Code _InStrumer_]ted defining program region 200 () : Defined region — 8=002
(defining the region) no pre-execution I » should have similar characteristics — 5=0.05

» should not drastically change the program characteristics 0
217 219 221 223 225 227 229 231 233 235 237

time [sec]

runtime runtime

; : AMD Opteron148, DDR-SDRAM 1GB, GbE, NPB-MG CLASS=C 2 iterations, 16 nodes

B-adaptation [Chen et.al. 2005] ' selecting the gears Th tion 4 has i d by 4.49% (k na deadline 5=0.05
. | —_—

S —— before execution e execution time has increased by 4.49% (keeping deadline 5=0.05)

DVFS control a select the gear using relationship between = Overall energy consumption has increased by 1.21% while 5=0.05.
r.‘f‘ﬁ the pr?ﬁle theaCh. (CPU energy consumption has decreased by 4.01%)
» use only the performance information AVERELIS ST NG LD e I t; . d wh tati
 dor’tuso the power consumption dafa verall energy consumption was increased where static power
. consumption is large

FFTE: A High-Performance FFT Library |

e FFTE Is a Fortran subroutine library for computing the Fast Fourier Transform (FFT) in one or more dimensions.
@ |t includes complex, mixed-radix and parallel transforms.
® FFTE is typically faster than other publically-available FFT implementations, and is even competitive with

vendor-tuned libraries.
X He

CCh
allen |
* High speed ge benchmark ' Many FFT routines work well when data sets fit into a
= Supports Intel's SSE2/SSEJ instructions. cache.

e Parallel transforms \When a problem size exceeds the cache size, however, the
» Shared / Distributed memory parallel computers performance of these FFT routines decreases dramatically.

(OpenMP, MPI and OpenMP + MPI) » Some previously presented six-step FFT algorithms require

* High portability * Two multicolumn FFTs.
= Fortran77 + OpenMP + MPI * Three data transpositions.

= Intel’s intrinsics for SSE2/SSESJ instructions. The chief bottlenecks in cache-based processors.

* HPC Challenge Benchmark *\We combine the multicolumn FFTs and transpositions to
= FFTE's 1-D parallel FFT routine has been incorporated reduce the number of cache misses.

into the HPC Challenge (HPCC) benchmark.
Performance of FFTE 4.0
> e FFTW 2.1.5 (SSE2)

ms FETE 4.0 (x87)
e Performance Data: mem FFTE 4.0 (SSE3)
= One goal for large FFTs is to minimize the number of N1 x N2 x N3 = 2424 x P
cache misses. Machines:
e Ease of use: routine interfaces Xeon EM64T 3.0GHz
= Similar to sequential SGI SCSL or Intel MKL routines Gigabit Ethernet
* Portability 1024 MB DDR2/400
= Communication: MPI
= Computation: Fortran77 + OpenMP

frequency and actual performance

N

Performance [GFLOPS]

16
Number of CPUs

