

SGIMA: Experimental Results

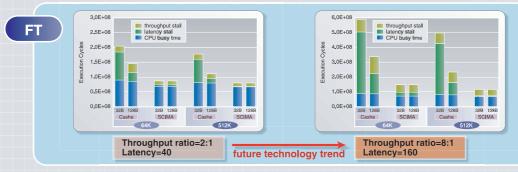
How to use On-Chip Memory

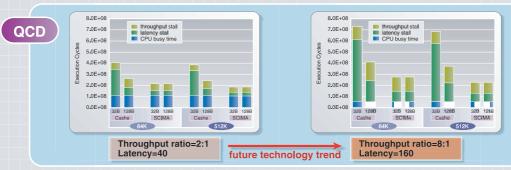
SCIMA provides various data placement and utilization scheme according to the characteristics of data access

reusability consecutiveness	not-reusable	reusable
consecutive	use On-Chip Mem. as a stream buffer	reserve On-Chip Mem. for reused data
stride	use On-Chip Mem. as a stream buffer	reserve On-Chip Mem. for reused data
irregular	use cache	reserve On-Chip Mem. for reused data

latency-stall reduction by burst transfer

latency & throughput-stall reduction by stride transfer


throughput-stall reduction by software controllability


Latency/Throughput stall is reduced for wide variety of data access

Evaluation Results

Throughput Ratio = Ratio between on-chip and off-chip memory throughput

Latency = Memory access latency for off-chip memory (latency for the first data)

SCIMA is robust to large throughput ratio and long memory access latency caused by current technology trend of CPU-memory speed gap