Heavy-light mesons in 2 + 1 flavor lattice QCD - Progress Report -

Yusuke Namekawa(Univ. of Tsukuba) for the PACS-CS collaboration

S.Aoki, K-I.Ishikawa, N.Ishizuka, T.Izubuchi, K.Kanaya, Y.Kuramashi, Y.Namekawa, M.Okawa,

Y.Taniguchi, A.Ukawa, N.Ukita, T.Yamazaki, T.Yoshie

Contents

1	Introduction					
2	Simulation setup					
3	Results					
	3.1 Charmonium spectrum	6				
	3.2 Charm-strange spectrum $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	9				
	3.3 Charm-ud spectrum \ldots \ldots \ldots \ldots \ldots \ldots	12				
4	Summary	15				

Summary

1 Introduction

[Light hadron spectrum]

PACS-CS collaboration reaches the physical point of dynamical ud, s quarks. Light hadron spectrum is reproduced well. PACS-CS, 2008; Y.Kuramashi talk \rightarrow The next target is the heavy quark system.

2 Simulation setup

We perform a lattice QCD simulation of a charm quark system using a relativistic heavy quark (RHQ) action on the PACS-CS configurations.

- Action : RG improved gauge + O(a) improved Wilson fermion for light sea quarks + RHQ for valence charm quark
- Lattice size : $32^3 \times 64 \ (L = 3 \text{ fm}, a^{-1} = 2.2 \text{ GeV} \ (\beta = 1.90))$
- Sea quark masses : $m_{ud} = 3 10$ MeV, $m_s = 75 80$ MeV ($m_{\pi} = 160 - 300$ MeV, $m_{\pi}L = 2.3 - 4.3$)
- Inputs : m_{π}, m_K, m_{Ω} for $m_{ud}, m_s, a; \overline{m}(1S) \equiv \frac{1}{4}(m_{\eta_c} + 3m_{J/\psi})$ for m_{charm}

 $[Statistics \ of \ heavy-light \ measurements] - \frac{Preliminary}{Preliminary} - \frac{Preliminary}{Preliminary} - \frac{Preliminary}{Preliminary} - \frac{Preliminary}{Preliminary} + \frac{Preliminary}{$

• Heavy-heavy measurements have been finished with full statistics of 1000 - 2000 MD times.

κ_{ud}	κ_s	$m_{ud}^{AWI}[{ m MeV}]$	$m_s^{AWI}[{ m MeV}]$	N_{conf} (MD time)
0.13770	0.13640	10	80	45~(1125)
0.13781	0.13640	3	80	25~(625)
0.13770	0.13660	10	75	50~(1250)
0.137785	0.13660	3	75	200(1000)

[Relativistic Heavy Quark(RHQ) Action] We employ a RHQ action(Tsukuba-type) for heavy quarks. S.Aoki et al, 2001

- Since the charm quark is not too heavy, relativistic approach is needed.
- RHQ action can control heavy quarks on the lattice. It reduces $O((ma)^n)$ to $O(f(ma)(g^2a\Lambda_{QCD}))$ where f is smooth around ma = 0.

 - $\diamondsuit \ \nu$ is non-perturbatively tuned.

$$\begin{split} S_{RHQ} &= \sum_{x,y} \bar{q}(x) D(x,y) q(y), \\ D(x,y) &\equiv \delta_{x,y} - \kappa_{heavy} \left\{ (1 - \gamma_4) U_4(x) \delta_{x+4,y} + (1 + \gamma_4) U_4^{\dagger}(x) \delta_{x,y+4} \right. \\ &+ \sum_i \left((r_s - \nu \gamma_i) U_i(x) \delta_{x+i,y} + (r_s + \nu \gamma_i) U_i^{\dagger}(x) \delta_{x,y+i} \right) \right\} \\ &- \delta_{x,y} \kappa_{heavy} \left\{ C_{SW}^s \sum_{i < j} \sigma_{ij} F_{ij} + C_{SW}^t \sum_i \sigma_{4i} F_{4i} \right\}. \end{split}$$

3 <u>Results</u>

3.1 Charmonium spectrum

- Charmonium spectrum is reproduced well except for the hyperfine splitting.
- The hyperfine splitting is slightly underestimated. \rightarrow Possible origins of the discrepancy are $O(g^2a)$ effects in RHQ action, disconnected loop contributions, dynamical charm quark effects. cf. Posters by L.Levkova,S.Gottlib

♦ Lattice data are extrapolated to the physical point with $m_{J/\psi} - m_{\eta_c} = A + B(m_{ud} - m_{ud}^{phys}) + C(m_s - m_s^{phys}).$

[Orbital excitation and fine structure]

- Sea quark mass dependence is mild.
- Orbital excitation and fine structure are reproduced well.

[Charm quark mass]

- $m_{charm}^{\overline{MS}}(\mu = m_{charm}^{\overline{MS}})$ is determined using the axial Ward identity.
- One-loop values are employed for Z_P, Z_{A_4} .
- 4-loop beta function is used for mass running.
- Our value of $m_{charm}^{\overline{MS}}(\mu = m_{charm}^{\overline{MS}})$ is smaller than the previous results. Continuum extrapolation is needed for a conclusion.

3.2 Charm-strange spectrum

- Spectrum is reproduced well except for the hyperfine splitting.
- The hyperfine splitting is slightly underestimated. \rightarrow Possible origins of the discrepancy are $O(g^2a)$ effects in RHQ action, dynamical charm quark effects.
- (For unstable particles, more detailed analysis using Lüscher's formula is needed.)

[Orbital excitation and fine structure]

• The orbital excitation and fine structure are reproduced well.

[Decay constant f_{Ds}]

- Our result does not show any clear deviation from experimental values and other group data except for HPQCD and UKQCD result.
 - \diamond HPQCD and UKQCD result increases if new r_1 data is employed.
 - \diamond We employ 1-loop values for renormalization factors of decay constants. Continuum extrapolation is needed. Effects of renormalization factors are reduced in the ratio of f_{D_s}/f_D .

3.3 Charm-ud spectrum

- Spectrum is reproduced, though our statistical errors are still large.
 → We increase the statistics now.
- (For unstable particles, more detailed analysis using Lüscher's formula is needed.)

[Orbital excitation and fine structure]

• Orbital excitation is reproduced well, though our statistical errors are still large.

 $\langle D_0^*(\text{scalar}) \rangle$ has not been confirmed experimentally, yet)

 $[\text{Decay constant } f_D]$

- Our result does not show any clear deviation from experimental value and other group data except for HPQCD and UKQCD result.
 - \diamond HPQCD and UKQCD result increases if new r_1 data is employed.
 - \diamond We employ 1-loop values for renormalization factors of decay constants. Continuum extrapolations is needed.

4 Summary

We performed a simulation of a charm quark system using RHQ action on $N_f = 2+1$ PACS-CS configurations. Our preliminary data showed the followings.

- Mass spectrums are reproduced well except for hyperfine splittings.
- Our data of the hyperfine splitting are slightly smaller than the experimental value.

 \rightarrow Possible origins of the discrepancy are $O(g^2a)$ effects in RHQ action, dynamical charm quark effects.

• Decay constants f_{D_s} , f_D do not show any deviations from experimental values. But, since we employ 1-loop renormalization factors, continuum extrapolations are needed for a conclusion.

