Physical Point Simulation in 2+1 Flavor Lattice QCD

Y.Kuramashi for PACS-CS Collaboration (Univ. of Tsukuba)

July 29, 2009

Plan of talk

- $\S1.$ The PACS-CS project
- $\S2$. Reweighting method
- §3. Parameters
- §4. Preliminary Results
- §5. Summary

$\S1$. The PACS-CS project

Parallel Array Computer System for Computational Sciences operation started on 1 July 2006 at CCS in U.Tsukuba

collaboration members
physicists:Collaboration members
physicists:CollaborationCollab

computer scientists: T.Boku, M.Sato, D.Takahashi, O.Tatebe Tsukuba T.Sakurai, H.Tadano

Physics plan

aim: 2+1 flavor QCD simulation at the physical point

	PACS-CS	CP-PACS/JLQCD
gauge action	Iwasaki	Iwasaki
quark action	clover with c_{SW}^{NP}	clover with c_{SW}^{NP}
a[fm]	0.07,0.1,0.122	0.07,0.1,0.122
volume	\gtrsim (3fm) ³	$\sim (2 \mathrm{fm})^3$
$m_{\rm ud}^{\rm AWI}$	physical point	64MeV
algorithm for ud	DDHMC with improvements	НМС
algorithm for s	UV-filtered exact PHMC	exact PHMC

Why is physical point simulation necessary?

- difficult to trace chiral logs for chiral extrapolation
- ChPT is not always a good guiding principle
- need a proper treatment of resonances
- simulations with different up and down quark masses
- \Rightarrow there are two types of problems

(1) Computaional cost

successfully solved by (Mass-Preconditioned) DDHMC PRD79(2009)034503

(2) Fine tuning on physical point

need 3 simulation points within a few MeV differenes around the physical point in 2+1 flavor case

 \Rightarrow demanding computational cost

try reweighting method both for ud and s quarks

\S **2. Reweighting method**

original: $(\kappa_{ud}, \kappa_s) \Rightarrow target: (\kappa'_{ud}, \kappa'_s)$ assuming $\rho_q \equiv \kappa'_q / \kappa_q \approx 1$

$$\langle \mathcal{O}[U](\kappa'_{ud},\kappa'_{s})\rangle_{(\kappa'_{ud},\kappa'_{s})} = \frac{\langle \mathcal{O}[U](\kappa'_{ud},\kappa'_{s})R_{ud}[U]R_{s}[U]\rangle_{(\kappa_{ud},\kappa_{s})}}{\langle R_{ud}[U]R_{s}[U]\rangle_{(\kappa_{ud},\kappa_{s})}}$$

reweighting factors

 $R_{ud}[U] = |\det[W[U](\rho_{ud})]|^2, \quad R_s[U] = \det[W[U](\rho_s)]$ where $W[U](\rho_q) \equiv \frac{D_{\kappa'_q}[U]}{D_{\kappa_q}[U]}$

Evaluation of $R_{ud}[U]$

introduce a complex bosonic field η

$$R_{ud}[U] = |\det[W[U](\rho_{ud})]|^2$$
$$= \langle e^{-|W^{-1}[U](\rho_{ud})\eta|^2 + |\eta|^2} \rangle_{\eta}$$

given a set of $\eta^{(i)}$ $(i = 1, \ldots, N_\eta)$ with the Gaussian distribution

$$R_{\rm ud}[U] = \lim_{N_\eta \to \infty} \frac{1}{N_\eta} \sum_{i=1}^{N_\eta} e^{-|W^{-1}[U](\rho_{\rm ud})\eta|^2 + |\eta|^2}$$

Evaluation of $R_{s}[U]$

assume det $W[U](\rho_{s})$ is positive $R_{s}[U] = \det [W[U](\rho_{s})]$ $= \langle e^{-|W^{-1/2}[U](\rho_{s})\eta|^{2} + |\eta|^{2}} \rangle_{\eta}$ Taylor expansion for $W^{-1/2}[U](\rho_{s})\eta$ $W^{-1}[U](\rho_{s}) = \frac{D_{\kappa_{s}}[U]}{D_{\kappa'_{s}}[U]}$ $= 1 - (1 - \rho_{s}) \left(1 - (D_{\kappa'_{s}}[U])^{-1}\right)$ $= 1 - X[U](\rho_{s})$

where $|1 - \rho_{\rm S}| \ll 1$ \Rightarrow expansion of $W^{-1/2}[U](\rho_{\rm S})\eta$ in terms of $X[U](\rho_{\rm S})$

Additional technique

Hasenfratz-Hoffmann-Schaefer

determinant breakup: divide $(\kappa'_q - \kappa_q)$ into N_B subintervals

$$\kappa_q \Rightarrow \kappa_q + \Delta_q \Rightarrow \dots \Rightarrow \kappa_q + (N_B - 1)\Delta_q \Rightarrow \kappa'_q$$

with $\Delta_q = (\kappa'_q - \kappa_q)/N_B$

$$\det \left[W^{-1}[U](\rho_{\mathsf{q}}) \right] = \det \left[W^{-1}[U] \left(\frac{\kappa_{q} + \Delta_{q}}{\kappa_{q}} \right) \right] \times \det \left[W^{-1}[U] \left(\frac{\kappa_{q} + 2\Delta_{q}}{\kappa_{q} + \Delta_{q}} \right) \right]$$
$$\times \ldots \times \det \left[W^{-1}[U] \left(\frac{\kappa'_{q}}{\kappa_{q} + (N_{B} - 1)\Delta_{q}} \right) \right],$$

reduce fluctuations of the reweighting factors

\S **3.** Parameters

simulation parameters

- original: $(\kappa_{ud}, \kappa_s) = (0.137785, 0.136600)$
- 1000 MD time, still increasing
- MP²DDHMC for ud quark with 8⁴ block, $\rho_1 = 0.9995$, $\rho_2 = 0.99$
- UV-filtered PHMC for s quark with $N_{poly} = 220$

reweighting parameters

- target: $(\kappa'_{ud},\kappa'_{s}) = (0.137800, 0.136645), (0.137800, 0.136690)$
- breakup intervals: $\Delta_{ud} = (0.137800 0.137785)/2$,

$$\Delta_{\rm S} = (0.136690 - 0.136600)/4$$

 $-N_{\eta} = 10$ for stochastic estimation of $R_{ud,s}$

\S 4. Preliminary Results

concentrate on $(\kappa'_{ud}, \kappa'_{s}) = (0.137800, 0.136645)$

- results for $R_{ud,s}$
- Reweighting for plaquette
- Reweighting for m_{π} , m_K , m_{Ω} (physical inputs for $m_{\rm ud}$, $m_{\rm s}$, a^{-1})
- hadron spectrum
- locate the physical point

Reweighting factors on each configuration

normalized with $\langle R_{ud,s} \rangle = 1$

Reweighting factors vs. plaquette value

clear dependence

Plaquette histgram w/ and w/o R_{ud}

distribution is slightly moved toward larger values

Plaquette histgram w/ and w/o $R_{\rm S}$

distribution is slightly moved toward larger values

π effective mass

reweighting effects are observed

\underline{K} effective mass

similar to π case

Ω effective mass

 m_{Ω} is slightly decreased

Hadron spectrum in comparison with experiment

 m_π/m_Ω , m_K/m_Ω are properly tuned

Locate the physical point

confirmed with three data point analysis $\Delta m_{\rm ud} \sim 1 {\rm MeV}, \ \Delta m_{\rm S}{\lesssim} 3 {\rm MeV}$

\S **5.** Summary

- Chiral extrapolation is not necessary anymore
- (6fm)³ box simulation is under way
- starting point for precision measurements