

The need for tools

WikipediA

A tool is a device that can be used to produce an item or achieve a task, but that is not consumed in the process

Wrong sort of tool can produce poor results, or not scale to larger problems

Lattice 2009 Beijing, I said ...

epcc

How do we access our data?

- In the same way we did a decade ago
- ssl terminal client (ssh) and copy protocol (scp)

Data explosion

- Data volumes Tbytes, Pbytes soon
- Data complexity
 - many ensemble, many measurements
- Rise of the mega collaboration
 - Globally distributed {machines, data, people}

We really need some tools!

Tools

http://ildg.sasr.edu.au/Plone/ildg/ildg-clients

- Globus online (Monday)
 - Reliable Data Movement via SaaS Raj Kettimuthu
- Web2py (Poster)
 - Poster A new user interface for the Gauge Connection lattice data archive, M. Di Pierro, J. Hetrick, D. Skinner, and S. Cholia
 - plus demo after this talk
- LATFOR grid tools, Dirk Pleiter et al. ildg-get, web client
- UKQCD Ildg-browser
- JLQCD faceted web client
- Metadata capture project
 - EPCC and Tsukuba University
 - T. Amagasa, M.G. Beckett, C.M. Maynard, J. Perry, T. Yoshie

LATFOR tools

- ildg-get can access data, metadata, and ILDG services
 - need to know LFN, or markovChainURI of the metadata
- Metadata webclient
- http://www-zeuthen.desy.de/latfor/ldg/doc/swinstall.html

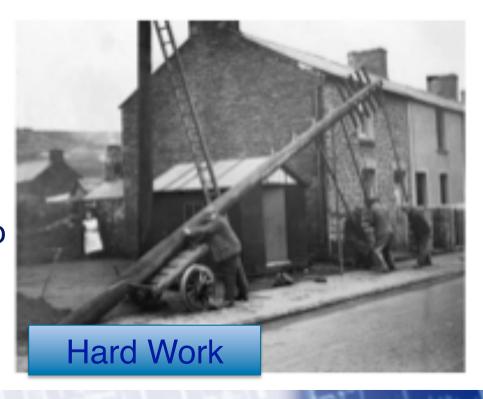
JLDG

- Faceted browsing
- http://www.jldg.org/facetnavi/

UKQCD ILDG-browser

- MDC GUI client
 - Self-contained Java application, runs on Windows/Mac/Linux.
- Allows users to:
 - GUI to construct queries to MDC
 - Search Metadata
 - Store queries
 - Retrieve metadata
- Does not have data access
 - use browser to find the Logical File Name (LFN)
 - Get data with ildg-get

UKQCD ILDG-browser demo


```
_ 🗆 🗙
        Command Prompt
Recyde Bin
        C:\opt\ildg-browser-v1.6
```


Metadata capture

- Tools thus described are for accessing ILDG services
 - they exist and are useful
- No tools for metadata capture
 - Ensuring data provenance is difficult
 - are there degrees of provenance?
- QCD production codes are highly optimised
 - run on highly diverse (and bespoke) architectures
- Require lightweight process to ease pain of post-processing data

ETMDC

- Edinburgh Tsukuba Metadata capture project
 - T. Amagasa, M.G. Beckett, C.M. Maynard, J. Perry, T. Yoshie
- Explore workflow as a mechanism for MDC
- Edinburgh funded by
 - OMII-UK
 - Software Sustainability Institute
 - Edinburgh Global (UoE)
- End product
 - Demonstrator universal metadata capture tool for ILDG
 - Linux/Unix environment
 - Python, XSLT, make
 - QCD utils
 - some hints from QCD code gen

MDC design criteria

- Considered workflow tools
 - Metadata generated and manipulated as part of data generation process
 - Examples: Kepler, Taverna, Ruby
 - QCD ConfGen Jim Simone's FNAL group
- Complex tools with rich functionality
 - Will they run in bespoke QCD environment
- Lightweight is key criterion
 - opted for simplest solution
 - build demonstrator out of most commonly available components
 - Used make to manage dependencies, but could upgrade to Kepler
- Used two example codes
 - JLQCD, CPS

Metadata

- ALL QCD codes output meaningful metadata
 - plus input parameter files
 - system size, physical parameters, quark, gluon couplings
 - algorithmic parameters, step size
 - measured quantities, plaquette, checksums etc
 - state information, user, code version, machine information
 - Gauge configuration file
- No scheme for organising this information
 - parse and process this information
- Add some minimal mark-up to information already produced
 - some hints for the tool

Hints

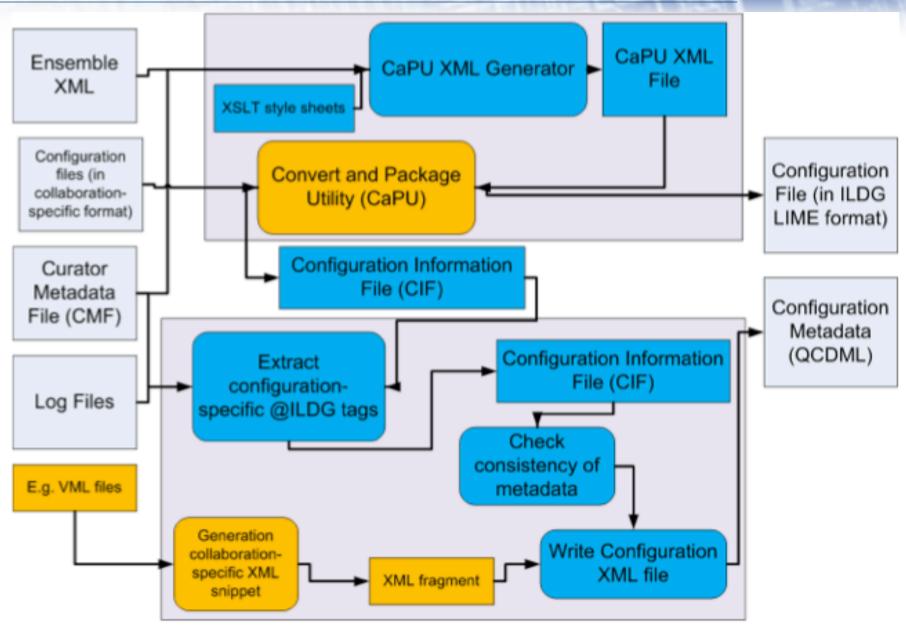
- Add simple markup to output
 - easy for user to implement its just plain text
 - gives tool something to work with
- simple @ILDG tag for interesting information in plain text files
- Examples:

@ILDG:codeVersion "v4.0"

@ILDG:checksum 475303070

•

User input



- QCDml Ensemble ID [XML]
 - written by human once per ensemble
- gauge configuration files
- log files with hints
- Curator metadata file (CMF)
 - where are the data, log files etc
- MDC demonstrator will do the rest!
 - Two main components
 - Configuration File generator
 - Configuration XML generator

MDC architecture

Example CMF

specify batch processing of configurations
@ILDG:UpdateStart and @ILDG:UpdateEnd to delimit
information in log file

format string-style pattern to specify file name

Configuration File Generator

- Two components
 - XSLT transform creates CaPU XML from
 - Ensemble XML ID
 - CMF
- Conversion and Packing Utility (CaPU)
 - specific to collaboration, but has common interface
 - converts data to ILDG format
 - measures plaquette, CRC checksum etc
 - writes Configuration Information File (CIF) (above + LFN)
- UKQCD based on qdp++ utility
 - if qdp++ can read your data, easy to modify the CaPU
- JLQCD is shell script + data conversion

Configuration XML Generator

calculated plaquette =

logfile plaquette

- Creates the QCDml config ID
- Several components Python
- Extract configuration specific information
 - from CMF, CIF and log files
- Consistency and completeness checker
 - Do I have all the information I need?
 - Do the sources of metadata agree?
 - am I processing the data I think I am? Provenance
- Include collaboration specific information
 - e.g. VML from CPS
- Write the XML

Summary

- MDC Demonstrator
 - Using common linux/unix tools/software to build components
 - Can automatically post-process data into QCDml
- Others can use or adapt demonstrator
 - simple modifications to output of QCD code
 - simple modifications to CaPU
- Can be downloaded from ILDG web site

Conclusions

- ILDG we need tools
- There are tools out there
 - useful!
- More groups are developing tools
- If you need help get in touch
- Share experiences
- Neolithic → bronze age
 - cross over or 1st order transition?

NERSC gauge connection

http://tests.web2py.com/ildg/default/index

