Science Cases for PFS-SSP survey: Probing the End of Reionization with High-z Lyα Emitters

Satoshi Kikuta (NAOJ) et al.

Missing Piece of the Reionization Puzzle: Source, History, and Topology

- What drives reionization?
 - Low-mass star forming galaxies? Faint AGNs? Or others?
- When and how it ended?
 - Starts early and prolonged? Late and abrupt?
 - Large neutral "islands" still exist at z~5.5 "patchy" reionization?

QSO GP trough observation: Becker+15

Model I $(f_{esc} = 0.21, \alpha > -2)$

Model II $(f_{esc} \propto \Sigma_{cep}^{0.4}, \alpha > -2)$ Finkelstein+19 ($f_{esc} \propto M_{halo}^{-1}$, $\alpha < -2$) Ishigaki+18 ($f_{esc} = 0.17$, $\alpha < -2$)

Redshift

PFS (Prime Focus Spectrograph) & PFS-SSP (Subaru Strategic Program) overview

- A very wide-field fiber spectrograph (380nm -1260 nm, R=2300 4300)
- ~2400 reconfigurable fibers in the 1.3 deg² FoV
- PFS-SSP: A 360 night survey is planned
- Observations will start in Feb 2024 (as of Mar 2022)
- LAEs are observed as part of the PFS Galaxy Evolution program

Planned galaxy sample and depth

Type	Redshift range	Selection	Exp. Time (hrs)	Expected # of spectra (×10 ³)
Continuum	0.7 - 2 $2.1 - 3.5$ $3.5 - 7$	y, J < 22.8	2, 12	261,14
IGM		y < 24.3,g < 24.7	6, 12	30.3, 14
LBG		y < 24.5	6	22
LAE	2.2, 5,7, 6.6	$L_{Ly\alpha}$ >3×10 ⁴² erg s ⁻¹	3, 6, 12	7.4, 4.5, 2.8
AGN	0.5 – 6.0	various (see text)	1 – 5	4.2

Data & LAE Selection Strategy (Update Version of Ono+21)

- LAEs are selected from HSC-SSP PDR3 (Aihara+22)
 - Typical 5σ depth in UD: 26.3 (NB816), 26.2 (NB921)
 - NB selection (Shibuya+18) → Eliminate artifacts with machine-learning and human eyes (Ono+21, PDR2 / S18A)
- Using all available NB data (incl. CHORUS NBs), LAEs at z=2.2, 3.3, 4.9, 5.7, 6.6, 7.0, 7.3 can be obtained

Wider (30 deg²) & 0.5-1 mag deeper!

Science Cases for PFS-SSP: Statistics of z>6 LAEs with spec-z

- Largest spectroscopic sample at EoR will be obtained
 - Update Lyα Luminosity Function, Auto Correlation Function, Lyα EW Distribution
 Function of LAEs at z>5.7 with spec-z (led by Umeda-san)
 - Constrain X_{HI} with smaller uncertainty → History
- Synergy with 21cm emission observations with MWA, SKA (Kubota+18) ··· see session 6
 - Cross-correlation with 21cm line and LAEs → Detection of ionized bubble (Topology)

Variation of Lya Line Profile: History and Topology

- IGM absorption affects typical Lyα line shapes as a function of x_{HI}
- Probe dependence on various properties
 - Luminosity: constraint on Source (and LAE's intrinsic property)
 - Redshift: more direct constraint on History
 - Environment: constraint on Topology
 - Bright neighbor / overdensity may assist Lyα to escape via ionized bubble

No evolution found

LAE at z=5.8 in a proximity of a QSO (Bosman+20)

Mason+20

Search for Non-Thermal Sources (Faint AGNs, etc.)

- PFS can also observe UV metal emission lines such as NV, CIV, HeII (and CIII] for z=5.7) sign of AGNs
- AGN fraction in LAEs affects the Source and Topology (outside-in; Miralda-Escude+20)
 - \sim 300 LAE L_{1va} > 10⁴³ erg/s at z=5.7, 6.6 will be observed
 - CIV is simultaneously detectable (L_{CIV} > 10⁴² erg/s, if AGN)
 - Co-evolution history can be constrained from comparison with z=2-3

Detection of NV and HeII from z=7.15 LAE "COSY"

Summary + Appendix

- We are constructing ML-aided catalogs of LAEs at various redshift (z=2.2 7.3) based on the final HSC-SSP datasets
- Subset of LAEs will be observed in PFS-SSP;
 Using the high-z LAE sample, we probe the end of reionization
 - Its Source mainly from AGN fraction
 - Its History from Evolution of LF/ACF/EW distribution and Lyα line shape

- Its **Topology** from the relation btw. Lyα line shape and environment, cross-correlation

with 21cm emission, AGN fraction

- Bonus science in COSMOS:
 - morphology VS Lyα line shape with JWST image (COSMOS-Webb/PRIMER)
 - n(LAE)/n(LBG) (Yoshioka+22) VS Lyα line shape

