Comparison between the *c*-*M* **relation** and the Observations of Dark Matter Haloes

Yuka Kaneda, Yudai Kazuno, Koki Otaki, Masao Mori (University of Tsukuba)

GALAXY-IGM WORKSHOP 2022

GALAXY-IGM WORKSHOP 2022

In Cosmological N-body Simulations

universal mass density distribution

ex) NFW profile Navarro, Frenk & White(1996)

$$\rho(r) = \frac{\rho_s r_s^3}{r(r+r_s)^2}$$

 $r_{\rm s}$: scale radius $ho_{\rm s}$: scale density

 $M_{200} \equiv \frac{4}{3}\pi 200\rho_{\rm crit,0}(1+z)^3 r_{200}^3$

In Cosmological N-body Simulations

(*c*-*M* relation)

universal mass density distribution

ex) NFW profile Navarro, Frenk & White(1996) $\rho(r) = \frac{\rho_s r_s^3}{r(r+r_s)^2} \qquad \begin{array}{c} r_s: \text{ scale radius} \\ \rho_s: \text{ scale density} \end{array}$ integrate $M(r) = 4\pi\rho_{s}r_{s}^{3}f\left(\frac{r}{r_{s}}\right)$ where $f(x) = \ln(1+x) - \frac{x}{1+x}$ concentration-mass relation $c_{200} \equiv \frac{r_{200}}{r_{s}}$: concentration $M_{200} = 4\pi\rho_{\rm s}r_{\rm s}^3 f\left(\frac{r_{200}}{r_{\rm s}}\right)$ r_{200} : virial radius $M_{200} \equiv \frac{4}{3}\pi 200\rho_{\text{crit},0}(1+z)^3 r_{200}^3$

In Cosmological N-body Simulations

universal mass density distribution

ex) NFW profile Navarro, Frenk & White(1996)

$$\rho(r) = \frac{\rho_s r_s^3}{r(r+r_s)^2}$$

 $r_{\rm s}$: scale radius $ho_{\rm s}$: scale density

concentration-mass relation (*c*-*M* relation) $c_{200} \equiv \frac{r_{200}}{r_{s}}$: concentration r_{200} : virial radius

 $M_{200} \equiv \frac{4}{3}\pi 200\rho_{\rm crit,0}(1+z)^3 r_{200}^3$

Purpose of This Study I

to investigate the c-M relation of the **low mass** haloes **statistically** using the results of the **ultra-high resolution** simulation

Data and Methods

The c-M Relation

The c-M Relation

Scaling Relations of Observations

What are "scaling relations"?

universal correlation of properties in DM haloes

Burkert

+ Strigari et al. (2008)

Kormendy & Freeman

Purpose of This Study II

to explore the **origin** of the properties of the observed haloes compare "**theoretical prediction**" and "**observations**"

The c-M Relation with Observations

The c-M Relation with Observations

Comparison with the Scalings

- Burkert relation: $v_0 = 17.7 (r_0 \text{ kpc}^{-1})^{2/3} \text{ km s}^{-1}$
- ◆ Strigari relation: $M_{<300 {\rm pc}} \sim 10^7 M_{\odot}$
- ★ Kormendy & Freeman relation: $\rho_0 r_c = 70 \pm 4 M_\odot \, \mathrm{pc}^{-2}$

 r_{\max} : radius where the rotation curve has a maximum circular velocity V_{\max} : maximum circular velocity

Summary & Discussion

- \checkmark our *c*-*M* relation (25–75 percentile) > Ishiyama–Ando function
- ✓ theoretical c-M relation well reproduces the observations from dwarf galaxies to clusters of galaxies
- ✓ observation with higher resolution for dwarfs is expected to constrain the c-M relation models
- ✓ scaling relations anchor c-M relation
- \checkmark the gap between the scaling relations and the c-M relation

-> investigate the origin of this in relation to the corecusp problem