# Foreground Removal with Gaussian Process Regression for observing the Epoch of Reionization

Takumi Ito (2nd year of Master course ) Kumamoto University

Shintaro Yoshiura(NAOJ), Keitaro Takahashi(Kumamoto univ)



1

### What is the Epoch of Reionziation



#### Dark ages

 $\rightarrow$  After the cosmic recombination, and there have been no luminous objects

#### Cosmic Dawn

 $\rightarrow$  First luminous objects are formed.

#### Epoch of Reionization

 $\rightarrow$  ionizing photons from galaxies ionized the neutral hydrogen gas distributed in the Universe.

Billions of years ago

https://astrobites.org/wp-content/uploads/2015/05/cover.png





### 21 cm line

- We can observe IGM at the EoR via HI 21cm line.
- $\rightarrow$ We can follow the evolution of IGM

z=7.5





 The 21 cm line emission is due to the spin flip of neutral hydrogen atoms. • HI distribution at different redshifts can be observed by different frequencies



**IGM** simulation orange: HI emission (not ionized) black: no HI emission(ionized)

#### Mellena et al 2013





### Foreground



• How to remove FG? →use difference between FG and EoR signal - Emission strength (FG >> EoR signal) -Spectral behavior (FG:smooth)

- Signal = FG + EoR signal + noise
- FG is brighter than EoR signal  $(\sim 10^3 \text{ in order})$
- Avoidance and Removal of FG are important



#### • There are various foreground removal techniques

- Generalized Morphological Component Analysis(GMCA)
- FastICA
- GPR has been applied to LOFAR foreground removal (Mertens et al 2020)

## We apply GPR to the MWA data and try to remove FG

Principal Component Analysis(PCA) Gaussian Process Regression(GPR)



Image Credit: Natasha Hurley-Walker

## Murchison Widefield Array(MWA)

SKA low pathfinder

#### spec(phase1)

- Frequency
- number of tiles
- number of baselines
- field of view
- spectral resolution

70~300MHz

128

8128

610 sq deg @ 150MHz

20kHz

### Code

foreground removal technique in the context single-dish 21cm intensity mapping. (Soares P. S., Watkinson C. A., Cunnington S., Pourtsidou A., 2021)  $\rightarrow$  I apply GPR4 im to MWA gritted visibility

#### Data

- MWA Simulation data(2h@EoR0)

GPR4im is a package uses Gaussian Process Regression (GPR) as a

MWA Observational data (high band observation in 2014 (2h@EoR0))



## Gaussian Process Regression(GPR)

Gaussian Process(GP)→Multivariate Gaussian Distribution, N

• If we assume random value f follows GP, we write  $f \sim N(m, K)$ 

where *m*:mean, *K*: covariance(kernel)



## Foreground Removal with GPR

- Observed data is described as a column vector,  $\mathbf{d}$ , containing the instrumental measurements at each frequency(column vector  $\rightarrow$  visibility, pixel of intensity map...)  $\mathbf{d} = \begin{bmatrix} d_1 \\ d_2 \\ \vdots \\ d_n \end{bmatrix}; \nu = \begin{bmatrix} \nu_1 \\ \nu_2 \\ \vdots \\ \nu_n \end{bmatrix}$
- Our data vector d consists of the foreground ( $f_{fg}$ ), EoR signal ( $f_{21}$ ), noise(n)

$$\mathbf{d} = \mathbf{f}_{\mathbf{fg}} + \mathbf{f}$$

Assuming each component to be statistically uncorrelated, the covariance of the data K is given by



## $f_{21} + n$

 $K = K_{fg} + K_{21} + K_n$ 

• Assuming the data vector is Gaussian distributed, we can model its probability distribution as

 $\mathbf{d} \sim N(m(\nu), K(\nu, \nu))$ 

where *m*:mean function, *K*:covariance function

• We can write joint probability distribution of data and Foreground  $\begin{bmatrix} \mathbf{d} \\ \mathbf{f}_{fg} \end{bmatrix} \sim \begin{pmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} K_{fg} + K_{21} + K_n & K_{fg} \\ K_{fg} & K_{fg} \end{bmatrix} \end{pmatrix}$ 

• From above equation, the expectation value  $E[f_{fg}]$  and covariance  $Cov[f_{fg}]$  $E[\mathbf{f}_{fg}] = K_{fg}[K_{fg} + K_{21} + K_n]^{-1}\mathbf{d}$ is driven as  $\operatorname{Cov}(\mathbf{f_{fg}}) = K_{fg} - K_{fg}[K_{fg} + K_{21} + K_n]^{-1}K_{fg}$ 





#### **Flow outline**

# Choose kernels of FG,21cm,noise (be described later) $K = K_{fg} + K_{21} + K_n$

• Fit kernels to UV gritted visibilities and make FG model from the kernels

$$\mathrm{E}[\mathbf{f}_{\mathrm{fg}}] = K_{fg}[K_{fg} +$$

• Subtract FG model from data

 $\mathbf{r} = \mathbf{d} - E[\mathbf{f}_{fg}]$ 

 $K_{21} + K_n]^{-1}$ **d** 







## **Covariance** (Kernel)

• Matern kernel is widely used kernels in GPR

$$K_{\text{Matern}}(\nu,\nu') = \sigma^2 \frac{2^{1-\eta}}{\Gamma(\eta)} \left( \sqrt{2\eta} \frac{|\nu-\nu'|}{l} \right)^{\eta} K_{\eta} \left( \sqrt{2\eta} \frac{|\nu-\nu'|}{l} \right)$$

- $\sigma^2$ :Variance(amplitude of the signal)

- Next page explains how these parameters work

 $\Gamma$ :gamma function,  $K_n$ :modified Bessel function of the second kind,

*l*:Length scale(topical scale of correlations in the data across frequency)

 $\eta$ :spectral parameter(It determines the overall "smoothness" of the data)





### **Comparing parameters**

#### randomly generated data plots with Metern kernels, with shown parameters



 $\sigma^2$ :Variance  $\rightarrow$  A lager  $\sigma^2$  means the signal is stronger. *l*:Length scale  $\rightarrow$  A lager *l* means the data is more correlated in frequency  $\eta$ :spectral parameter  $\rightarrow$  A lager  $\eta$  means the data is smoother



13

## Choosing kernels (Mertens et al 2020)

- Foreground kernel  $-\eta \rightarrow \infty$ : Very smooth FG  $-\eta = 3/2$ :FG components that have medium frequency smoothness
- $K_{\rm fg} = K_{\alpha}$  Hlkernel  $-\eta = 1/2$ :spectrally varying signal such as HI signal
- Noise kernel - Assume that thermal noise is constant in frequency
- Fit covariance  $K = K_{fg} + K_{21} + K_n$  to data covariance( $l, \sigma^2$ :free parameter)

$$+ K_{3/2}$$

 $K_{21} = K_{1/2}$ 

 $K_{\rm n} = \sigma^2 \delta_{\nu \nu'}$ 

(I don't use  $K_{21}$  to simulation data since the simulated data consists of FG and noise)



### Result(simulation)

MWA high band simulation using RTS (2h@EoR0)
Foreground( 2000 point sources ) + Thermal noise

✓ I will show you ...
- Visibility
-2D power spectrum



## **Results(simulation)**



- Simulated visibilities before/after FG removal using GPR and its Residual -Signals getting weaker (order  $10^1$ )
- Compare Residual and input noise -residual and the input noise are same order.







### 2D Power Spectrum

- $k_{\parallel}$ : wavenumber parallel to line of sight
- -spectrally smooth(FG)  $\rightarrow$  low  $k_{\parallel}$ -not smooth(HI)  $\rightarrow$  high  $k_{\parallel}$
- k<sub>1</sub>: wavenumber perpendicular to line of sight
- -diffuse emission(FG)  $\rightarrow$  high  $k_{\perp}$
- EoR window
- Lower foregrounds
- The "Wedge"
- -EoR signal + Foreground contamination

## **Result 2DPS(simulation)**



- Residual looks reproduce input noise on  $k_{\parallel}$ >0.2
- $k_{\parallel} < 0.2$  are overfitted

#### Bright signals are subtracted and it makes coarse band harmonics weaker.



18



#### MWA coarse band harmonics

These lines are systematics caused by flagging aliased channels from the polyphase filter banks



## **Result 2DPS(simulation)**



- Residual looks reproduce input noise on  $k_{\parallel}$ >0.2
- $k_{\parallel} < 0.2$  are overfitted

#### Bright signals are subtracted and it makes coarse band harmonics weaker.





### **Result(Observation)**

• MWA high band observation in 2014 (2h@EoR0) -Calibrated by RTS -Gridded by CHIPS

 $\checkmark$  I will show you ... - Visibility -2D power spectrum



### Result (observation)



- Residual.
- Signal getting weaker(order 10<sup>1</sup>)

blue: Data green: Estimated\_FG orange Residual

• one of the gridded visibilities before/after foreground removal and its

vis\_20\_1(29)









## **Result 2DPS(observation)**



- Signal getting weak on  $k_{\parallel} > 0.1$

Bright signals are subtracted and it makes coarse band harmonics weaker.





## **Result 2DPS(observation)**



- Signal getting weaker on  $k_{\parallel} > 0.1$

Bright signals are subtracted and it makes coarse band harmonics weaker.



### **Even/odd cross power spectrum**

• Even/odd cross power spectrum -lower noise power \* even data cube+odd data cube contains sky signal and noise \* even data cube - odd data cube contains only noise  $((E+O)(E+O)^{\dagger} - (E-O)(E-O)^{\dagger})\frac{1}{4}$  $= (EE^{\dagger} + OO^{\dagger} + EO^{\dagger} + OE^{\dagger} - (EE^{\dagger} + OO^{\dagger} - EO^{\dagger} - OE^{\dagger}))\frac{1}{4}$  $= (2EO^{\dagger} + 2OE^{\dagger})\frac{1}{4}$  $= R(EO^{\dagger})$ 



• GPR remove coarse band harmonics, and Residual is consistent with noise in EoR window

#### white : negative value



• GPR remove coarse band harmonics, and Residual is consistent with noise in EoR window

$$\mathbf{K} = \sqrt{\mathbf{K}_{\text{para}}^2 + \mathbf{K}_{\text{pepr}}^2}$$

### Diagnostic power spectra

- even data cube odd data cube contains only noise
  - →Assuming it's power shows the power of thermal noise.
- Diagnostic PS before/after FG removal using GPR and its Residual -Signals getting weaker (order  $10^1 \sim 10^2$ ) -Power of data < Power of FG on K < 0.1
  - →fitting might be wrong?





not normalized

YY

### **Diagnostic power** spectra

- even data cube odd data cube contains only noise →Assuming it's power shows the power
  - of thermal noise.
- Diagnostic PS before/after FG removal using GPR and its Residual -Signals getting weaker (order  $10^1 \sim 10^2$ ) -Power of data < Power of FG on K < 0.1→fitting might be wrong?



### **Results and FutureWorks**

• Foregrounds are stronger than data in  $K < 10^{-1}$ →fitting might be wrong -Test other kernels -Calculate uncertainties

#### We tested GPR foreground removal to MWA observational data $\rightarrow$ Signals are getting lower (~10<sup>1</sup> Jy in order at each wavenumber)