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What is the Epoch of Reionziation

Billions of years ago
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Dark ages
— After the cosmic recombination, and there have been no luminous objects

— onizing photons from galaxies ionized the neutral hydrogen gas distributed in the Universe.



21cm line

* \We can observe IGM at the EoR via HI 21cm line.
* The 21 cm line emission is due to the spin tlip of neutral hydrogen atoms

e H| distribution at different redshifts can be observed by different frequencies

—\We can follow the evolution of IGM

oT (mK) at z=7.5 (167 MHz) OT (mK) at z=6.8 (182 MHz)

|GM simulation
orange: Hl emission (not ionized)
black: no Hl emission(ionized)
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Foreground

EOR signal
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e Avoidance and Removal of FG are

Important

@ 120 MHz Jelic et al 2008

* How to remove FG?
—use difference between FG and EoR signal
- Emission strength (FG >> EoR signal)
-Spectral behavior (FG:smooth)



 There are various foreground removal techniques

» Generalized Morphological o Principal Component Analysis(PCA)

Component Analysis(GMCA) . Gaussian Process Regression(GPR)
« FastiCA

* GPR has been applied to LOFAR foreground removal
(Mertens et al 2020)

We apply GPR to the MWA data and try to remove FG



Murchison Widefield
Array(MWA)

SKA low pathfinder
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Code

e GPR4im is a package uses Gaussian Process Regression (GPR) as a
foreground removal technique in the context single-dish 21cm

intensity mapping. (Soares P. S., Watkinson C. A., Cunnington S.,

Pourtsidou A., 2021)
— | apply GPR4im to MWA gritted visibility

Data

e MWA Simulation data(2Zh@EoRO)

e MWA Observational data (high band observation in 2014 (2h@EoRO))



Gaussian Process Regression(GPR)

e (Gaussian Process(GP)—Multivariate Gaussian Distribution, N

e |f we assume random value f follows GP, we write
f ~ N(m, K)

where m :mean, K: covariance(kernel)



Foreground Removal with GPR

e Observed data is described as a column vector, d, containing the instrumental

measurements at each frequency(column vector—visibility, pixel of intensity map...)

dl [/1
d = d2 — Y2
d ,

e Our data vector d consists of the foreground (ffg), FoR signal (f5;), noise(n)
d — ffg -+ f21 + 1

e Assuming each component to be statistically uncorrelated, the covariance of the

data K is given by K — ng 4 K21 + Kn



e Assuming the data vector is Gaussian distributed, we can model its

orobability distribution as
d ~ Nim(v), K(v,v))

where m:mean function, K:covariance function

e \We can write joint probability distribution of data and Foreground

d 0 ng + K21 + Kn ng

e From above equation, the expectation value E[ffg] and covariance C()V[ffg]
is driven as Elf,] = K, [ K, + Ky + K1 'd
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Flow outline

e Choose kernels of FG,21cm,noise (be described later)

K = Kp, + K51 + K,
e it kernels to UV gritted visibilities and make FG model from the kernels
Elf;,] = K,[K, + K,, + K,]7'd

e Subtract FG model from data



Covariance (Kernel)

e Matern kernel is widely used kernels in GPR

1=

[v=v] v =]
Kyvtatern (Vs V) = 07 V2 K, (/2
Matern( ) o 1—,(71) ( 4l I 7 i I

[":gamma function, K, :moditied Bessel function ot the second kind,

6:Variance(amplitude of the signal)
[:Length scale(topical scale of correlations in the data across frequency)

n:spectral parameter(lt determines the overall “smoothness” of the data)

 Next page explains how these parameters work



Comparing parameters

randomly generated data plots with Metern kernels, with shown parameters

| Soares et al 2021
RBF (n — o0, £ =1, g’ = 1) Exponential (n =1/2, ¢ =1, o’ =1)
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means the signal is stronger.
[:Length scale = A lager [ means the data is more correlated in frequency

n:spectral parameter = A lager 7 means the data is smoother
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Choosing kernels(Mertens et al 2020)

* Foreground kernel
-n — 00:Very smooth FG

-n = 3/2:FG components that have medium frequency smoothness

Kp, = K, + K3

e H| kernel

-n = 1/2:spectrally varying signal such as HI signal

Ky = Kyp

- Assume that thermal noise is constant in frequency

K = 0%,

n

e Noise kernel

V'
o Fit covariance K = K, + K, + K| to data covariance(l, 6*:free parameter)

(I don't use K, to simulation data since the simulated data consists of FG and noise )
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Result(simulation)

e MWA high band simulation using RTS (2h@EoRO)

* Foreground( 2000 point sources ) + Thermal noise

v I will show you ...
- Visibility

-2D power spectrum



Results(simulation)
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e Simulated visibilities before/after FG removal using GPR and its Residual

-Signals getting weaker (order 10"

e Compare Residual and input noise

-residual and the input noise are same order.
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Dillon et al 2014
2D Power Spectrum
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k, * wavenumber perpendicular to line ot sight

-diffuse emission(FG) = high k

FoR window

- Lower foregrounds

The "Wedge”

-EoR signal + Foreground contamination




Result 2DPS(simulation)

Data=FG+noise Estimated FG  Data-Estimated FG  Data-FG

data foreg round residual . iInput_noise

[.ZH_ A[]'d30]
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x 16F% 107% x 1072 - 3x10Fr% 1076 x 1072  10-1 3x10F%x1076x107% 107! 3x10Fr% 1076 x 1072 10-1

k, [Mpc™!]

e Bright signals are subtracted and it makes coarse band harmonics weaker.

* Residual looks reproduce input noise on k;>0.2

. kH<O.2 are overfitted
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Data=FG+noise

data

MWA coarse band harmonics

These lines are systematics caused
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3x10Fk10°6x10"2 1p-1

k, [Mpc™!]




Result 2DPS(simulation)

Data=FG+noise Estimated FG  Data-Estimated FG  Data-FG

data foreg round residual . iInput_noise

[.ZH_ A[]'d30]

°_
not normallzed
| 6 10°

x 16F% 107% x 1072 - 3x10Fr% 1076 x 1072  10-1 3x10F%x1076x107% 107! 3x10Fr% 1076 x 1072 10-1

k, [Mpc™!]

e Bright signals are subtracted and it makes coarse band harmonics weaker.

* Residual looks reproduce input noise on k;>0.2

. kH<O.2 are overfitted
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Result(Observation)

e MWA high band observation in 2014 (2h@EoRO)
-Calibrated by RTS
-Gridded by CHIPS

v I will show you ...
- Visibility

-2D power spectrum



blue: Data

Result (observation) roon Estimated, FG
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e one of the gridded visibilities before/after foreground removal and its

Residual.

e Signal getting weaker(order 101 Vis_20.1(29) 2



Result 2DPS(observation)
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e Bright signals are subtracted and it makes coarse band harmonics weaker.

* Signal getting weak on k;>0.1
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Result 2DPS(observation)
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e Bright signals are subtracted and it makes coarse band harmonics weaker.

e Signal getting weaker on k;>0.1



Even/odd cross power spectrum

e Fven/odd cross power spectrum

-lower noise power

* even data cube+odd data cube contains sky signal and noise

* even data cube - odd data cube contains only noise
|
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white : negative value

foreground
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e GPR remove coarse band harmonics

and Residual is consistent with noise in EoR window




white : negative value

o foreground residual
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e GPR remove coarse band harmonics

and Residual is consistent with noise in EoR window




Diagnostic power
spectra

e cven data cube - odd data cube contains
only noise
— Assuming it's power shows the power

of thermal noise.

e Diagnostic PS before/after FG removal

— data

- foreground using GPR and its Residual

- residual

—— predict_noise -Signals getting weaker (order 10" ~ 10?)

-Power of data < Power of FG on K < 0.1

—titting might be wrong?

K = \/Klz)ara T ngpr



not normalized

Diagnostic power
spectra

— data

- foreground
— residual
— predict_noise

e cven data cube - odd data cube contains

only noise

— Assuming it's power shows the power
of thermal noise.

e Diagnostic PS before/after FG removal
using GPR and its Residual

-Signals getting weaker (order 10! ~ 10?)
-Power of data < Power of FG on K < 0.1

—titting might be wrong?

K = \/Klz)ara T ngpr



Results and FutureWorks

e \We tested GPR foreground removal to MWA observational data

—Signals are getting lower (~10! Jy in order at each wavenumber)

e Foregrounds are stronger than data in K < 107!
—titting might be wrong
-Test other kernels

-Calculate uncertainties



