Figh-ZAGN with WST

HSC

Main collaborators: Xuheng Ding (Wuhan U), John Silverman (Kavli IPMU), Yoshiki Matsuoka (Ehime U), Kohei Inayoshi (KIAA), Dale Kocevski (Colby College), Takuma Izumi (NAOJ), Michael A. Strauss (Princeton), Junya Arita (U Tokyo) and the project members of JWST GO #1967, #3859

Masafusa Onoue (Kavli astrophysics fellow, Kavli IPMU / KIAA)

PMU INSTITUTE FOR THE PHYSICS AND MATHEMATICS OF THE UNIVERSE

Super Massive Black Hole (SMBH)

Stellar orbit around Galactic center

What is their origin? -> high-redshift quasars

EHT image of BH shadow

EHT collab. 2022

SMBH - Galaxy Co-evolution

BH - bulge mass relation

• Evolution of BH accretion density

Cosmic ``chicken-or-egg" problem

ULAS J1342+0928 (FIRE 3.5 hr + GNIRS 4.7hr Bañados+18)

◆ SMBH: M_{BH}=8×10⁸ M_{sun}, L_{bol}/L_{Edd}=1.5 (Bañados+18 Onoue+20)

Quasar Discovery & Wide-Field Survey

z=6 Quasar Luminosity Function (Matsuoka+18c)

Most massive BHs -> Wide surveys, Representative BHs -> Deep surveys

18 300 $[m^2 deg^2]$ HSC-SSP = <u>Wide</u> (1,100 deg²) & 200 **Deep** ($r_{5\sigma} = 26 \text{ mag}$) survey by a 8m-class telescope! Etendue 100 視野 口径× SDSS Blanco SkyMapper CFHT/MegaC LSST Subaru Subaru VST/OmegaCAM STARRS STARRS /DECai /HSC S

HSC-SSP white paper

BHWS, GOTENBA, 28 FEB 2024

Dust-reddened quasars

Barcelona high-z quasar workshop (Barcelona, Spain May 17 - 18, 2023)

Near-zone & IGM measurements

+ Ting-Yi Lu

courtesy of Y. Matsuoka

QSO Discovery (~2013)

QSO Discovery (~2018)

QSO Discovery (now)

Others: e.g., Reed+19, Yang+19-20, Wang+21, Yang+23

QSO Discovery (M_{1450} >-24)

Subaru has a dominant position in high-z ``faint" quasar discovery!

Z=6-7 Quasar Luminosity Function (Paper V & XIX)

mag⁻¹)

(Gpc⁻

Ф

Z=6-7 Quasar Luminosity Function (Paper V & XIX)

z=6-7 Quasar Luminosity Function (Paper V & XIX)

AGN observations in PFS-SSP

 \star ~11,000 fibers (tbc) in the GE field

- ... Discussion ongoing in the GE-AGN sub-WG, led by Yoshiki Toba
- * ~36,000 fibers (tbc) in the CO field
 - ... Will be proposed as ancillary science targets (with internal priorities?)

PFS-AGN town mtg at Waseda (March 4) !!

Targets (1)	Selection (2)	$N_{ m AGN}^{ m total}$ (3)	$N_{ m AGN}$ (4)	$rac{N_{ ext{fiber}}}{(5)}$	$T_{ m exp}$ (6)	$N_{\rm fiber}T_{\rm exp}$ (7)
GE field						
BL candidates $(z < 4)$	CFHT u – Spitzer colors	5,700	3,000	6,000 (0.5)	1-4	15,000
BL candidates $(z > 4)$	HSC – Spitzer colors	500	500	1,000 (0.5)	4 – 5	4,500
X-ray sources	Chandra, XMM-Newton	10,000	2,000	2,000 (1.0)	4 – 5	9,000
Sub-mm galaxies	SCUBA-2 w/ ALMA counterparts	300	300	1,000 (0.3)	5	5,000
Radio galaxies	FIRST	200	200	300 (0.7)	3	900
IMBH candidates	HSC flux variability	30	30	300 (0.1)	2	600
Total			6,030	10,600		35,00
CO field						
BL candidates $(z > 4)$	HSC colors	15,000	15,000	30,000 (0.5)	0.5	15,00
X-ray sources	eROSITA	1,700	1,700	1,700 (1.0)	0.5	85
Mid-IR sources	WISE 22 μ m	1,000	1,000	1,500 (0.7)	0.5	750
Radio galaxies	FIRST	20,000	1,500	1,700 (0.9)	0.5	85
Lensed quasar candidates	HSC shapes	100	100	1,100 (0.1)	0.5	55
Total			19,300	36,000		18,00

Note. — Columns (1) target; (2) selection method; (3) total number of AGNs expected over the entire survey field; (4) number of AGNs we aim to observe; (5) number of requested fibers (the number in parenthesis represents the expected success rate of AGN identification, i.e., N_{AGN}/N_{fiber}); (6) exposure time (hr);

(7) fiber hours.

PFS public-facing document (arXiv:2206.14908 Greene et al.)

Figure 16. Top: Simulated PFS spectra of quasars with $M_{1450} = -23$ mag placed at z = 0.5 (black), 2.0 (blue), 4.0 (green), and 6.0 (red). The average observing conditions and 1-hr on-source integration are assumed in the simulations. Bottom: Simulated 30-min spectra of simulated CO quasars placed at z = 4.0 and 6.0. As above, $M_{1450} = -23$ mag.

"Tracing the SMBH growth: outlook beyond the HSC-SSP, and future collaborations" (Kagoshima University Nov 31 - Dec 2, 2022)

courtesy of Y. Matsuoka

JWST follow-up of z~6 HSC quasars *Cy1JWST #1967 (50hr)* `Full Census of SMBHs and Host galaxies at z=6" PI: M.Onoue (KIAA/IPMU) Co-PIs: X.Ding, J.Silverman (IPMU), T.Izumi (NAOJ), Y.Matsuoka (Ehime)

J2255+0251 (z=6.33)

15

GO 1967: Full Census of SMBHs and Host Galaxies at z=6 (50hr) PI: M.Onoue (IPMU / KIAA)

Co-PIs: X.Ding, J.Silverman (IPMU), Y.Matsuoka (Ehime), T.Izumi (NAOJ) Co-Is: M.Strauss (Princeton), K.Jahnke (MPIA) + 38 collaborators

- Target

- NIRCam Imaging
 - Filter: F150W + F356W (straddling 4000Å break)
- Host detection
 - **M***, size, age, companions -

- Mean (and scatter of) M_{BH} / M_* ratio at z=6
- BH mass function, Eddington ratio distribution

◆ M^{*} vs M_{dyn}, nuclear & host-scale gas outflow (with Cy9 ALMA; PI: T.Izumi)

Challenge in Resolving Host Stellar Emission

BHWS, GOTENBA, 28 FEB 2024

NIRCam: HSC J2255+0251 (z=6.33)

NIRCam: HSC J2255+0251 (z=6.33)

Host Starlight Detection at z>6: J2236+0032 (z=6.40, y_{AB}=23.2, M₁₄₅₀=-23.8)

Host fra		
F356W	F150W	F
25.5%	10.2%	23.′

Host Starlight Detection at z>6: J2255+0251 (z=6.34, y_{AB}=23.0, M₁₄₅₀=-23.9)

Host fraction		Host mag		Stellar mass
F356W	F150W	F356W	F150W	[log M*/Mo]
9.8%	< 3.8%	24.58 (0.30)	> 26.3	10.53 +0.51-0.37

Ding, Onoue, Silverman et al. (2023)

Post-starburst signature in z=6 quasar hosts

- Quasar continuum & host stellar emission are iteratively fitted during Bagpipes SED fit

- Quasar power-law continuum is matched to F356W photometry

- Host spectrum is derived by subtracting the quasar model and scaled to match NIRCam F356W photometry (x1.04 for J2236, x1.38 for J1512)

Post-starburst signature in z=6 quasar hosts

- Quasar continuum & host stellar emission are iteratively fitted during Bagpipes SED fit

- Quasar power-law continuum is matched to F356W photometry

- Host spectrum is derived by subtracting the quasar model and scaled to match NIRCam F356W photometry (x1.04 for J2236, x1.38 for J1512)

Spectrophotometric SED fit with Bagpipes

ID	J2236+0032		J1512+4422		
SFH	delayed- τ	top hat	hat delayed- $ au$		
α_{λ}	-1.65 ± 0.01	-1.65 ± 0.01	-2.26 ± 0.01	-2	
z	$6.4048\substack{+0.0007\\-0.0006}$	$6.4048\substack{+0.0006\\-0.0006}$	$6.1806\substack{+0.0003\\-0.0004}$	6.1	
$\log M_*/M_{\odot}$	$10.63\substack{+0.04\\-0.03}$	$10.64\substack{+0.03\\-0.04}$	$10.78\substack{+0.02\\-0.02}$	1	
mass-weighted age [Myr]	240^{+20}_{-30}	250^{+30}_{-30}	200^{+20}_{-20}		
$ au ~ [{ m Myr}]$	16^{+10}_{-5}		18^{+8}_{-6}		
age_max [Myr]		320^{+100}_{-50}			
age_min [Myr]		170^{+40}_{-50}			
$A_V [mag]$	$0.04\substack{+0.07\\-0.03}$	$0.03\substack{+0.06\\-0.01}$	$0.08\substack{+0.09\\-0.05}$	(
$\sigma_* \; [\mathrm{km \; s^{-1}}]$	< 240	< 240	200_{-40}^{+40}		
noise scaling factor	$1.46\substack{+0.05\\-0.05}$	$1.45\substack{+0.05\\-0.05}$	$1.89\substack{+0.07\\-0.07}$	1	

- Massive (log M*/M_{sun} > 10) galaxies formed via starburst <u>a few hundred Myr</u> before these quasars are observed

- Need more data to probe pre-burst & young stellar population (-> Cy2 for J2236)
- ALMA Cy9 program ongoing ([CII] + dust)

top hat 2.27 ± 0.01 $.805^{+0.0004}_{-0.0004}$ $0.79^{+0.03}_{-0.03}$ 220^{+40}_{-30} 320^{+110}_{-80} 100^{+50}_{-30} $0.09^{+0.10}_{-0.05}$

 200^{+50}_{-40} $.89^{+0.08}_{-0.07}$

Most distant quiescent galaxies known

- z_spec: observed redshift
- z_form: redshift when 50% of the total stellar mass is formed (= age)

Additional NIRCam imaging for J2236 **GO #3859** (PI:MO, Co-PI:X.Ding, 11hr w/ NIRCam)

Host SED of J2236 will be better constrained with an imaging spectrum (1-5 um) F480M will catch z=6.4 HAEs around the central quasar (to be compared with EIGER & ASPIRE results)

Data just arrived on the Cy3 deadline date!!

BHWS, GOTENBA, 28 FEB 2024

with 0.3 dex accuracy

Discovery of z>5 faint AGN with CEERS

Can we find AGN in JWST surveys?

HSC studies suggest ~1% of galaxies host AGN

CEERS (Cy1 ERS program, PI: S.Finkelstein)

♦ A <u>public</u> JWST survey of Extended Groth Strip (EGS): One of the HST/CANDELS fields

 \Rightarrow 100 arcmin² covered by 6 BB + 1 MB NIRCam filter, 5sigma depth = 29.6 in F356W) - Catalog of HST-selected LBGs available (Stefanon+17)

- Visual inspection of z>4 HST-selected LBGs -> ~20 compact sources

Visual Inspection of z>4 LBGs

F277W F356W F410M F444W F277W F410M F356W F444W F277W F356W F410M F444W

• Most LBGs have extended morphology or have companions (FWHM = 0.040 asec, or 1.298 pixel in F115W)

A Candidate of a Low-Luminosity AGN at z=5

CEERS-AGN-z5-1: a z=5 LBG (F115W=26.6±0.2, M₁₄₅₀=-19.5±0.3) with compact morphology & AGN-like SED
 Broad/medium-band excess at F277W (Hβ+[OIII]) & F410M/F444W (Ha)

 -Hβ+[OIII]: EW_{rest}=1100Å, L=10^{43.0} erg s⁻¹
 -Ha: EW_{rest}=1600Å, L=10^{42.9} erg s⁻¹

SED Fitting for CEERS-AGN-z5-1

Low-z QSO composite (Vanden Berk+01) + additional BLR lines

AGN models are preferred, while the host likely contributes to [OIII] (top-heavy IMF or O-enriched ISM) - Maybe followed-up in CEERS's NIRSpec MSA observations in Dec 2022

A New Parameter Space Probed by JWST

★L_{bol} comparable to z<0.4 AGNs with M_{BH}=10⁶ M_{sun}
 ★the AGN LF at M₁₄₅₀=-19.5 gets >1 dex higher than expected from optical studies (and consistent with Giallongo+19's rest-frame hard X-ray-selected sample)
 →High-z Low-luminosity AGN surveys are feasible with 4 NIRCam pointings

Broad Ha detection with NIRSpec MSA

-FWHM_{broad}(Ha)=2060 ± 290 km/s, L₅₁₀₀ = 4.48±0.08 × 10⁴³ erg/s - M_{BH} (FWHM_{Ha} converted to FWHM_{HB}; Greene & Ho 05) = 1.3±0.4 × 10⁷ M_{sun} \Rightarrow Least-massive BH at z>5 (JWST can be a high-z AGN survey telescope!)

Kocevski, Onoue, Inayoshi et al. (2023)

-> High-z analogs of ULIRG / Blue DOG?

BHWS, GOTENBA, 28 FEB 2024

`Little Red Dots"

See also Matthee+, Labbe+, Greene+, Kokorev+

Blue UV & red optical continuum with broad line detection

See Noboriguchi-san's talk!

Z~5 AGN LF

Broad Ha detection from 20 AGN (Matthee+24)

BHWS, GOTENBA, 28 FEB 2024

host contamination? High fraction of dust-reddened AGN? non-AGN BL sources?

- log M*/M_{sun}~11
- post-starburst-like SEDs with mass-weighted age ~ 200 Myr
- ◆ Large offset in M_{BH} M^{*} relation is not found, consistent with ALMA M_{dyn} measurements. We aim to increase the sample size in the coming JWST cycles
- higher number density of Seyfert-class AGN at high-z, including modestly dust-reddened AGN.

Summary

◆ Stellar emission is detected from 7 moderate-luminosity quasars at z=6. Host is generally massive with

Stellar absorption lines are detected for 2 bright quasar hosts. Spectrophotometric analysis suggests

A low-luminosity AGN is found from the first CEERS data. Many more discoveries follow to find >1 dex