<u>3次元輻射流体計算で探る超大質量ブラックホールの起源</u> ~浮遊する種ブラックホールへの超臨界降着過程~

Erika OGATA* Ken OHSUGA* Hajime FUKUSHIMA*

(*Center for Computational Sciences, University of Tsukuba)

宇宙物理理論研究室

Theoritical astronomical group in University of Tsukuba

Supermassive Black Hole

- It exists universally at the center of the galaxies
- There is a strong relation with the bulge mass of the host galaxies (left Fig.)
- It already exists even in the early universe $z \ge 7$ (right Fig.)

→How is the supermassive BH born? (Open question in astronomy)

Theoretical scenario of formation of SMBHs

The formation process of supermassive black holes consists of 2 steps.
 ① Birth of seed BHs with a mass of 10²⁻⁵M_☉
 ② Growth of the seed BHs to SMBHs (via Gas accretion, Merger with other BHs/stars)

20 – 15

Redshift

Theoretical scenario of formation of SMBHs

• The formation process of supermassive black holes consists of 2 steps. (1) Birth of seed BHs with a mass of $10^{2-5} M_{\odot}$

What do we do?

• To contribute to understanding of the formation process of SMBHs, we investigate gas accretion mechanism of the seed BHs <u>floating in the dusty remnant galactic gas</u>

Q. How much is the accretion rate?

Previous studies of moving objects in dusty-gas

Toyouchi et al. 2020

3D-radiation hydrodynamics sim. assuming the isotropic radiation

These works indicate that both the hydrodynamics and the anisotropy of the radiation are important factors for the growth rate of seed BHs in dusty-gas

Ogata et al .2021

Non-hydrodynamics calculation assuming the **anisotropic radiation**

What are our strengths?

- Such strong radiation heats and sublimates dust grains
 - We perform **3D-Radiation Hydrodynamics simulations**
 - considering the Anisotropic radiation and Sublimation of the dust

	Hydro- dynamics	Radiation	C subl
Toyouchi+2020	0	Isotropic	
Ogata+2021	×	Anisotropic	
This work	0	Anisotropic	

In general, the BHs have accretion disks, and they produce anisotropic radiation field

Methods

• We use the 3D-radiation hydrodynamics sim. code SFUMATO-M1 (Fukushima & Yajima 2021) with the adaptive mesh refinement, the modified ver. of SFUMATO (e.g.Matsumoto 2007) and SFUMATO-RT (Sugimura+2020).

Radiation hydrodynamics eq.

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho v) = 0$$

$$\frac{\partial (\rho v)}{\partial t} + \nabla (\rho v \otimes v) + \nabla P = \rho (g + f)$$

$$\frac{\partial (\rho E)}{\partial t} + \nabla [(\rho E + P)v] = \rho (g + f) \cdot v + \Gamma - \Lambda$$

$$E = \frac{|v|^2}{2} + (\gamma - 1)^{-1} \frac{P}{\rho}$$

E: total energy Γ : heating rate E_{rad} : radiative energy density α_E : absorption coefficient y_i : n_i/n_H ρ : density v: velocity g: gravity Λ : cooling rate F_{rad} : radiative flux α_{F} : absorption coefficient R_{i} : chemical reaction rate P: pressure f: radiation force P_{rad} : radiative pressure tensor \tilde{c} : reduce light speed

Moment eq. (M1 closure)

- $\frac{\partial E_{\text{rad}}}{\partial t} + \nabla \cdot \boldsymbol{F}_{\text{rad}} = S \alpha_{\text{E}} \tilde{c} E_{\text{rad}}$
- $\frac{1}{\tilde{c}}\frac{\partial \boldsymbol{F}_{\text{rad}}}{\partial t} + \tilde{c}\nabla \cdot \boldsymbol{P} = -\alpha_{\text{F}}\boldsymbol{F}_{\text{rad}}$

 $\boldsymbol{P}_{\mathrm{rad}} = E_{\mathrm{rad}}\boldsymbol{D}$

 $D = \frac{1-\chi}{2}I + \frac{3\chi - 1}{2}n \otimes n \quad , n = \frac{F}{|F|}$ $\chi = \frac{3 + 4f^2}{5 + 2\sqrt{4 - 3f^2}} , f = \frac{|F|}{\tilde{c}E}$

Chemical networks $\frac{\partial(y_i n_{\rm H})}{\partial t} + \nabla \cdot (y_i n_{\rm H} v) = n_{\rm H} R_i$ H, H_2, H^+, H^-, H_2^+ $CO, C^+, O, O^+, O^{2+}, e$

at the inner boundary with anisotropy ($\propto \cos \theta$)

We mask the BH accretion disk by the sink region and inject ionizing photons

• Sink radius $R_{\rm in} = 2 \times 10^{-3} {\rm pc}$ **< Dust sublimation radi.**

• Simulation box size $R_{out} = 2 \times 10^1 \text{pc}$ \gg lonized region & Bondi-Hoyle-Lyttleton radi.

inosity
$$L = \begin{cases} 2L_{\rm E}[1 + \ln\left(\frac{\dot{M}}{2\dot{M}_{\rm E}}\right)] & (\dot{M}/\dot{M}_{\rm E} > \\ L_{\rm E}\frac{\dot{M}}{\dot{M}_{\rm E}} & (\text{otherwise}) \end{cases}$$

• Spectrum $L_{\nu} \propto \nu^{-1.5}$

Parameters

Fiducial model

- BH mass : $M_{\rm BH} = 10^4 M_{\odot}$
- Gas velocity : $v_{\infty} = 20 \text{ km/s}$
- Gas number density : $n_{\infty} = 10^4 \text{ cm}^{-3}$
- Gas temperature : $T_{\infty} = 180 \text{ K}$
- Metallicity : $Z = 0.1 Z_{\odot}$
- Disk inclination : edge-on

*Why do we choose these values as a fiducial model?

 Cosmological sim. show the flow structure with these values (in the remnant galaxies)

Mass accretion rate onto seed BHs

- if $M_{\rm BH} n_{\infty} \gtrsim 10^{10} [M_{\odot} \rm cm^{-3}]$ (left Fig.)
- (Collapse of the ionization region (e.g. Inayoshi+2016) is not a necessary condition)
- The accretion occurs intermittent (right Fig.)

• Time-averaged accr. rate could be Super-Eddington rate $(\dot{M}/\dot{M}_{\rm E} \ge 10, \dot{M}_{\rm E} \equiv L_{\rm E}/c^2)$

• Super-Eddington accr. occurs only by gas accr. near the equatorial plane (middle Fig.)

Acceleration of seed BHs

- obtained from our simulations (below eq.)
- could accelerate in the direction of its motion
- upstream ionization front

We calculate the acceleration of seed BHs using the density and velocity distribution

• In the dusty-gas for $n_{\infty} \lesssim 10^5$ [cm⁻³], seed BHs moving at \gtrsim several $\times 10$ km/s

The main factor of acceleration is gravity caused by the high-density shell near the

(e.g. Toyouchi+20, Ogata et al. Submitted)

DISCUSSION : Evolution of seed BHs

• In any situation, t_v (velocity change) $\ll t_{z=6}$ (age of the universe at z = 6) t_v (velocity change) $\ll t_M$ (mass growth)

→ Any seed BHs change velocity first and grow in mass later

• Only if $M_{\rm BH}n_{\infty} \gtrsim 10^9 \ [M_{\odot} {\rm cm}^{-3}]$, t_M (mass growth) $\ll t_{z=6}$ (age of the universe at z = 6) \rightarrow Seed BHs could grow into supermassive BHs until <u>z</u> \sim 6

Accretion rate, acceleration \rightarrow \rightarrow Timescales of mass growth (t_M) and velocity change (t_v)

DISCUSSION : Evolution of seed BHs

- In any situation, t_v (velocity change) $\ll t_{z=6}$ (age of the universe at z = 6) t_v (velocity change) $\ll t_M$ (mass growth)
 - → Any seed BHs change velocity first and grow in mass later
- Only if $M_{\rm BH} n_{\infty} \gtrsim 10^9 \ [M_{\odot} \rm cm^{-3}]$, t_M (mass growth) $\ll t_{7=6}$ (age of the universe at z = 6) \rightarrow Seed BHs could grow into supermassive BHs until $z \sim 6$

Accretion rate, acceleration \rightarrow \rightarrow Timescales of mass growth (t_M) and velocity change (t_V)

DISCUSSION : Evolution of seed BHs

Note that,

- When the seed BHs accelerate to the velocity of about $\sim 100 \text{ km/s}$, the flow structure becomes similar to the classical **Bondi-Hoyle-Lyttleton accretion**
- That is, seed BHs are in the deceleration phase (It doesn't keep accelerating all the time)
- Therefore, the velocity distribution of seed **BH could be biased** \gtrsim several \times 10km/s

FUTURE WORK

Because of the huge simulation costs,

Cosmological similations Quataert 2010 $M = \alpha \times M_{BHL}$ (α : Boost factor) **Upper-limit is Eddington rate** Ishiyama et al. 2021

Mpc scale

kpc scale

 Our redults suggest that $M_{\rm BH} n_{\infty} \gtrsim 10^{10} \ [M_{\odot} {\rm cm}^{-3}]$: $\dot{M} \gg \dot{M}_{\rm Edd}$ (This presentation, Ogata et al. in prep.) $M_{\rm BH}n_{\infty} \ll 10^{10} \ [M_{\odot} {\rm cm}^{-3}]$: $\dot{M} \ll \dot{M}_{\rm BHL} \& \dot{M}_{\rm Edd}$ (Ogata et al. submitted)

this study aims to understand the gas accretion mechanism at the Sub-pc scale

Boost factor and the condition of upper-limit should be modified

FUTURE WORK

 Because of the huge simulation costs, this study aims to understand the gas ad

Cosmological similations $\dot{M} = \alpha \times \dot{M}_{BHL}$ (α : Boost factor) Upper-limit is Eddington rate

Ishiyama et al. 2021

Mpc scale

kpc scale

Adopting the new boost factor and upper-limit condition???

this study aims to understand the gas accretion mechanism at the Sub-pc scale

We will simulate iteratively between the PC and << PC scales to make new Bondi-Hoyle-Lyttleton formula

We study the growth rate of seed BH floating in dusty galaxies in the early universe with 3D-radiation hydrodynamics simulations

FEATURES

Considering anisotropy of radiation and dust sublimation

RESULTS

Regarding seed BHs moving in the dusty gas,

- equatorial plane on the Bondi-Hoyle-Lyttleton scale
- while the others could float with velocity changing and constant mass

Super-Eddington accretion ($\dot{M} \gtrsim 10 \dot{M}_{\rm F}$) could occur due to gas supply from near the

• If $M_{\rm BH}n_{\infty} \gtrsim 10^9 \ [M_{\odot} {\rm cm}^{-3}]$, seed BHs could grow into supermassive BHs at high-z,

