

野村 真理子 (弘前大学)

共同研究者: 大須賀 健 (筑波大学), Chris Done (Durham Univ.) 大向一行 (東北大学), 水本岬希 (福岡教育大学), 工藤祐己 (東北大学), 和田桂一 (鹿児島大学), 川勝 望 (呉高専)

ブラックホール大研究会 @御殿場 2024/02/29

Contents

- + Introduction: SMBH growth and active galactic nuclei (AGNs)
- Ultra-fast outflows and their theoretical model
 - Magnetically-driven winds
 - Line-driven winds
- Impact of outflows on SMBH evolution
 - Suppression of mass accretion at the disk scale
 - Feedback onto the interstellar medium and multi-scale outflows

Supermassive black holes

- ← Supermassive black holes (SMBHs, $M_{\rm BH} \sim 10^{6-10} M_{\odot}$) are found in the center of almost all large galaxies.
- ★ $M_{\rm BH} \sim 10^9 M_{\odot} @ z \gtrsim 6 \rightarrow$ Heavy seed BHs of $\sim 10^{3-5} M_{\odot}$ and/or rapid gas accretion close to the Eddington rate are preferred, but the specific process of growth from seeds to SMBHs is not known.

Supermassive black holes

- ← Supermassive black holes (SMBHs, $M_{\rm BH} \sim 10^{6-10} M_{\odot}$) are found in the center of almost all large galaxies.
- ★ $M_{\rm BH} \sim 10^9 M_{\odot} @ z \gtrsim 6 \rightarrow$ Heavy seed BHs of $\sim 10^{3-5} M_{\odot}$ and/or rapid gas accretion close to the Eddington rate are preferred, but the specific process of growth from seeds to SMBHs is not known.

Co-evolution between SMBHs and galaxies

What is the evolution process of SMBH?

Growth by merging of black holes

◆ Growth due to the fall of surrounding gas into the black hole (mass accretion) → Understanding the activity galactic nuclei (AGNs) is important.

Active galactic nuclei (AGNs)

- The accretion of a large amount of mass onto a SMBH releases the gravitational energy via radiation and jets.
- The classical phenomenological model can explain basic spectral features (continuum, emission lines, absorption) of AGNs.

host galaxy

Ultra-Fast outflows

✦ Bule-shifted absorption lines suggest the outflows.

Ultra-Fast outflows

- ✤ Bule-shifted absorption lines suggest the outflows.
- Ultra-fast outflows (UFOs)
 - outflow speed ~0.1-0.3c
 - detected in 40% of nearby AGN samples
 - large mass loss rate and kinetic energy $\dot{M}_{\rm wind}/\dot{M}_{\rm Edd} \sim 0.01 - 1$, $L_{\rm wind}/L_{\rm Edd} \sim 0.1 - 10\%$
- ← Location of UFOs is $\sim 100R_S \rightarrow \text{disk wind}$
- ✤ Effects on the SMBH growth
 - decrease mass accretion rate \rightarrow suppress SMBH growth
 - feedback onto host galaxy \rightarrow SMBH-galaxy co-evolution

Possible launching mechanism of UFOs

1. Magnetically driven wind

- 2. Radiation-driven wind
 - Continuum-driven wind is unlikely in the sub-Eddington AGNs
 - Line-driven wind is preferred.

Line-driving mechanism

✦line-driven winds are accelerated by radiation force due to absorbing UV radiation through the bound-bound transitions of metals (line force)

line-driven winds in AGNs

- accelerated by radiation force due to absorbing UV radiation through the bound-bound transition of metals (line force)
- +Line force can accelerate the moderately ionized matter effectively.

Early theoretical works of line-driven winds

Hydrodynamics simulations

2D: Proga et al. (2000), Proga & Kallman (2004), 3D: Dyda & Proga (2017)

+ Calculations of steady structure: Risaluti & Elvis (2010), Nomura et al. (2013)

Method: basic equations & setup

Mass conservation

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0$$

Equations of motion

Radiation force

$$\frac{\partial(\rho v_r)}{\partial t} + \nabla \cdot (\rho v_r \mathbf{v}) = -\frac{\partial p}{\partial r} + \rho \left[\frac{v_\theta^2}{r} + \frac{v_\varphi^2}{r} + g_r + f_{\text{rad},r} \right]$$
$$\frac{\partial(\rho v_\theta)}{\partial t} + \nabla \cdot (\rho v_\theta \mathbf{v}) = -\frac{1}{r} \frac{\partial p}{\partial \theta} + \rho \left[-\frac{v_r v_\theta}{r} + \frac{v_\varphi^2}{r} \cot \theta + g_\theta + f_{\text{rad},r} \right]$$

$$\frac{\partial(\rho v_{\varphi})}{\partial t} + \nabla \cdot (\rho v_{\varphi} \mathbf{v}) = -\rho \left[\frac{v_{\varphi} v_r}{r} + \frac{v_{\varphi} v_{\theta}}{r} \cot \theta \right]$$

◆ Energy equation $\frac{\partial}{\partial t} \left[\rho \left(\frac{1}{2} v^2 + e \right) \right] + \nabla \cdot \left[\rho \mathbf{v} \left(\frac{1}{2} v^2 + e + \frac{p}{\rho} \right) \right] = \rho \mathbf{v} \cdot \mathbf{g} + \rho \mathbf{v} \cdot \mathbf{f}_{rad} + \rho \mathscr{L}$

radiation force due to
Thomson scattering line force

$$f_{rad} = \frac{\sigma_e F_{UV}}{c} + \frac{\sigma_e F_{UV}}{c} M$$
force multiplier
onization
parameter $\xi = 4\pi F_X/n$
density ρ
velocity gradient $\left|\frac{dv}{dr}\right| \Rightarrow M$
metallicity Z
Stevens & Kallman (1990)
Kudritzki et al. (1989)

Method: basic equations & setup

Acceleration mechanisms

X-ray spectra synthesis

X-ray spectra synthesis based on the simulations

- 1. Along the line of sight, ion populations are calculated using XSTAR.
- 2. Monte-Carlo simulations with MONACO code.

19

Mizumoto, MN, Done, Ohsuga, Odaka (2020)

vs PG1211+143

- ◆ Typical UFO target PG 1211+143
 - observed with XMM-Newton/EPIC-pn
 - $M_{\rm BH} \sim 10^8 \, M_{\odot}, \, L_{\rm bol}/L_{\rm Edd} \sim 0.9$
- X-ray spectrum can be well described by our model, showing that both the two sets of absorption lines and the strong emission line can be explained by line-driven disc wind.

Mizumoto, MN, Done, Ohsuga, Odaka (2020)

Expectations for XRISM

 Blended absorption lines of different ionization states can be resolved by XRISM observations.

Magnetically-driven wind

MHD winds produce **absorption lines with tails on the blue side.**

Toward a more precise theoretical model

+ MHD+line force

The toroidal magnetic field suppresses mass inflow from the disk surface to the pole direction.

 \rightarrow High density and low ionization in the launch area

 \rightarrow Line force is greater than pure line-driving

0.4 0.6 0.8

pure line-driving

1.0 1.2 1.4 1.6

with magnetic field

1.8

times larger than that of pure line-driving model Yang et al. (2021)

10

0.0 0.2

Toward a more precise theoretical model

More realistic radiation transfer:
 including scattered and
 reprocessed X-ray

lonization parameter increases the launch of the wind fails.

→ "Failed wind" returns to the disk surface and the density of the launch area increases.

→ Ionization decreases and wind is accelerated by line forces.

Periodic wind eruptions are obtained.

Current state of the theoretical model

Theoretical model for sub-Eddington AGN disc winds

model \ Physics taken into account	line transition	magnetic flied	scattering/ reprosesstion	mass conservation (decrease of mass accretion rate)
Proga et al. 2000, Proga & Kallman 2004	Ο	×	×	×
Yang et al. 2021 (Proga et al. 2003 for YSO)	Ο	0	×	×
Dyda et al. 2023 (Higginbottom et al. 2024 for CV)	Ο	×	0	×
Nomura et al. 2020, 2021	Ο	×	×	Ο
Fukumura et al. 2015, Wang et al. 2022	×	0	×	×

前半のまとめ

UFOの重要性とその加速メカニズム

- + 観測からわかること
 - UFOは降着円盤から噴出するdisk wind, 速度 ~0.1c, 高い電離状態
 - 質量放出率,エネルギー放出率が大きく,SMBHの進化過程に影響を及ぼして いる可能性がある.
- + 理論研究の現状
 - 磁気駆動型円盤風/ラインフォース駆動型円盤風が有力
 - XRISMによる吸収線の観測 (multi-component, line profile)で決着がつく??
 - おそらく実際は複雑
 - →より現実的なモデル構築が急務

MHD+line force

Outflows in SMBH evolution: the case of line-driven

- Question: Do the line driven winds suppress the mass accretion on the evolutional pass from seeds to SMBHs?
- This work explores the role of line-driven winds in a wide range of BH mass and Z/2 metallicity.

Metallicity and BH mass dependencies

 Denser and faster winds appear for higher metallicity and larger BH mass.

Reduction of mass accretion rate

Ratio of mass accretion rate onto BH to mass supply rate onto the disk.

The line-driven winds may suppress the mass accretion for $M_{\rm BH} \gtrsim 10^5 M_{\odot}$ in high-metallicity environments.

$$u_{\rm sup} = \dot{M}_{\rm sup} / (L_{\rm Edd} / 0.06c^2)$$

see Nomura et al. (2021) for details

Effects on the growth time of BHs

- + In metal poor environment ($Z = 0.1Z_{\odot}$), the growth time is not different from that for the no-wind case, and relatively fast evolution is possible.
- ◆ Growth times for Z = 5Z_☉ at all the time or for Z increasing from 0.1-5Z_☉ are 1.6 and 1.8 times larger than that for no-wind case respectively.

→ Line-driven wind has an impact on the evolution of SMBHs.

Feedback onto ISM

+ Momentum driven wind

- Thermal energy of the shocked gas is rapidly cooled via radiative cooling.
- Momentum is conserved between the wind and ISM.
- A portion of ISM is affected by wind ram pressure and BH accretion can continue.

+ Energy driven wind

- Cooling time scale is larger than the dynamical time scale of the wind.
- Energy is conserved between the wind and ISM.
- Powerful feed back suppresses the mass accretion onto BH.

UFOs and large-scale outflow

Accretion disk winds (such as UFOs) can accelerate the molecular outflows and local dusty winds
 Observed frequency [GHz] → 2 kpc

Momentum driven or Energy driven?

+ Compare momentum and energy between molecular outflows and UFOs.

In many objects, energy is lost in molecular outflows.

Energy transfer rate is ~0.007-1

Remaining Issues in Theoretical Research

- Multi-scale simulations are necessary for comprehensive understanding of multi-scale outflows.
- Each scale simulation has been developed, but the calculations connecting them have not yet been accomplished.

Remaining Issues in Theoretical Research

- Multi-scale simulations are necessary for comprehensive understanding of multi-scale outflows.
- Each scale simulation has been developed, but the calculations connecting them have not yet been accomplished.

Dusty outflow

- Radiation-hydrodynamic simulations including dust opacity.
 - Dust-gas mass ratio = 0.01. Dust sublimation and sputtering are included.

 $M_{\rm BH} = 10^7 M_{\odot}$

Assuming the stationary

radiation field
$$L = 0.1L_{Edd}$$

Dusty gas can escape from the nucleus. Dust-free gas ($r \lesssim 0.04$) is bound.

UFO+Dusty outflow (future work)

Input velocity, density, and temperature

UFO changes the structure and mass outflow rate of dusty outflow.

Mass accretion onto accretion disc is regulated by dusty winds.

Simulations connecting the different scale from 10^{-5} pc to 1 pc

後半のまとめ

UFOがSMBHの成長に与える影響

- + 降着円盤からの質量の引き抜き
 - ラインフォース駆動型円盤風を考えた場合、金属量が高く、BH質量が大きい
 (*M*_{BH} ≥ 10⁵ *M*_☉)の場合に質量降着率を減少させ、SMBHの成長時間に影響を与 える可能性がある.
- + 周辺環境へのフィードバック
 - UFO (円盤風) がISMに衝突し,分子アウトフロー,ダストアウトフローなどの 多層構造の起源になっている可能性?
 - 広いダイナミックレンジに渡って、ローカルに加速されるアウトフローや、 UFOの伝搬を調べる必要性がある。