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The observations of high
redshift quasars poses a
challenge to the theoretical
models of SMBH growth
Uninterrupted (super-)
Eddington accretion onto seed
BHs (Mgy — 10 — 10°Mg?) is
needed

They should be “rare”.



SMBH formation processes
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Inayoshi, Visbal & Haiman 2019



Bondi accretion

Poor To spherically symmetric accretion of
\\, ambient medium:
\\ M ~ 4 RZ
. Bondi ¥ *THBPoCs
\
\ where

GMBH

2
CS

Rp = ~1.97x10"%cm Mgy , T4

... Bondi radius

- - ~3/2
MBondi/MEdd = 22M BH,4n00,4Too,4/




radiation feedback
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e i ’\ o Poor Teo
’ R =R N Intense mass accretion is always
e . associated with intense radiation.

\ Mgy / \\ * radiation pressure (' super-

! Eddington)
@ ' e radiative heating (ionization,
\ radiation : Compton scattering)
\ / \ > suppression of Mgondi & Teo-! 2
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How to avoid feedback effects

* In the spherically symmetric case,
the feedback due to radiation
pressure and heating can be
ineffective because of photon
trapping only when MBondi > 1
(Inayoshi et al. 2016).

Due to the formation of an accretion
disk, the radiation would be
anisotropic and super-Eddington
accretion through the equatorial
plane is expected (Sugimura et al.
2017; Takeo, Inayoshi et al. 2018).

Inayoshi+ 2016
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Mass accretion under anlsotroplc radiation
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" Poor Too,

o \ ) * super-Eddington accretion =

B formation of a geometrically
thick disk (slim disk)

* The region around the equatorial
plane do not suffer from
radiative heating

> MBopdj would not be

suppressed within a certain solid

angle around the equatorial plane
and remains super-Eddington.




Motivation of this work

* Mass accretion onto a black hole is not in general isotropic
but is disk-like, and so radiation from an accretion disk
would be shielded by the disk itself

—> Gas within the shielded angle would not be heated and

Bondi accretion rate would not be suppressed (Sugimura+
2016; Takeo+ 2018 etc.)

* (Can the gas behind the disk really avoid heating?
* Non-radial radiation flux produced by electron scattering
—> unlikely, because the ionized gas is optically thin
* Heat conduction < this work
* Convection
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Our picture
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*Toy > T

-> heat conduction from the
radiatively-heated region to
the adjacent cold region can
be significant

—> If the conduction is faster
than the accretion, the
surrounding medium would

be isotropically heated =
whole suppression of Mg,ndi

T
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About radiative heating

Bondi radius

GM .
RB — = el B ]()IhMBH._;T;_I_l cm,

2
Coo

ionization radius (i.e. the gas is fully ionized inside this radius)

1/3
3Qion /
Ryn = 5
47TareC.B,zoo

Compton sphere (i.e, the gas inside is heated by Compton scattering)

Lowd
)
R~

Comp

I 1/2 - )
B (47rc':' nkT) = 2.8 x 10°RgLign; "I, " m3’,
= Krolik+ 1981; Wang, Chen & Hu 2006

Rg < Ryyyor Réomp —> necessary for the suppression OfMBondi (otherwise the gas

in between Ry (R(Elomp) and Rg would accumulate and crush the bubble; Inayoshi+
2016; Sugimura+ 2017)



Compton heating

) Park et al. 2014
108 — |

. - “ By = 100 keV|]

Compton heating rate: ; AA b =30keV [

OTHe Vmax i i

FC i 5 / dUFU(hV — 4kBT), 4
MeC™ Vmin

E,: radiation flux per frequency bin
T: ambient temperature
n,: ambient electron density

Compton Temperature (T¢)

Vmax

dvFE, =F

108

Vmin

GTne N Vmax L 1 1 1 1
‘ [c = ( — 4kgT L0 1.2 1.4 L6 L8

m C Spectral Index (a)
2
where Ac = (2 — a) Vinax ~ Viin' (Vmax/Viin) (1<a<2) Independent of n, !
a— |

2—a __ 2 o
l)max lmm \

* the radiation field and the gas are in equilibrium when T = o = Tc
4kp/Ac




Condition for suppression of Bondi accretion

1. The surrounding material outside of the Bondi radius is
Compton-heated. 2 RComp < Rp

2. The conduction timescale at the Bondi radius is shorter

than the accretion timescale =2 tycc = teond



=
1. RComp < Rp
Two kinds of the Compton radius:
= _ L 1/2
(1) RCOmp - (47TCE‘.CnookToo)

1/2

L
= 8.5%10%cm ML/ ( ) T S LT
BH2\[ ., C7 "®5 "®4
6mmMeCc?R? R R3/2
(2) te=""01 tinfall= ;= ooy
tc = tinfall
infall _ 1 orl \? _ 17 L \*
= RComp ~ 2GMpgy (6nmecz) = 1.17x10 CmMBH’2 (LEdd)

—> Compare them with Rg = 1.97x101%cm MBH oZ,]ZL



2. taCC = tCOnd at R = RB

r3

~ 9 1/2 .3/2
GMpr 8.66x10 SMBHz e

tacc™

t

= ~ 2.4%x10° sng =T
cond kspTc/T SNoosic 7 Tis

where kgp = 5.82x10'" T, C ; ? (erg K1 cm! s°1) is the Spitzer’s heat conductivity

—1/2,,—5/2 _
tacc = teond atR = RB © MBHsNw4lws I, S 2.57X10 2



Log,,(E, .. ./keV)

102

10

Results: condition of M suppression
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high Emax, flatter spectrum of irradiation = high T
—> efficient conductive heating
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Results: condition of M suppression
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high Emax, flatter spectrum of irradiation = high T'¢
—> efficient conductive heating
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Discussion

 What values of Ej 5% and a are relevant?

* Comptonizing plasma (corona) in a super-Eddington accretion flow has
lower temperature (T ~ a few keV) and larger Thomson optical depth
(t, = 10) compared to that in a sub-Eddington accretion flow (NK &
Mineshige 2021 etc.)

* Emax may be significantly lower than —~ 100 keV and the X-ray spectrum
may be steeper than typical AGNs (i.e, a = 1).

- coronal temperatu
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Can we apply this results to the
seed BH growth at high redshift?

NK & Mineshige 2021



Summary

* We investigate how the heat conduction affects the
growth of a seed of a supermassive black hole.

 When a geometrically thick accretion disk is formed and
the radiation is anisotropic, it has been considered that
super-Eddington accretion from the equatorial plane is
possible. However, that region may be heated up through
conduction from the adjacent heated region.

 We evaluate the condition of M suppression due to
conduction. If the irradiation spectrum is flat (&« ~ 1) and
has a high Emax ( 100 keV), the medium surrounding a
BH is isotropically heated and M would be sub-Eddington.




