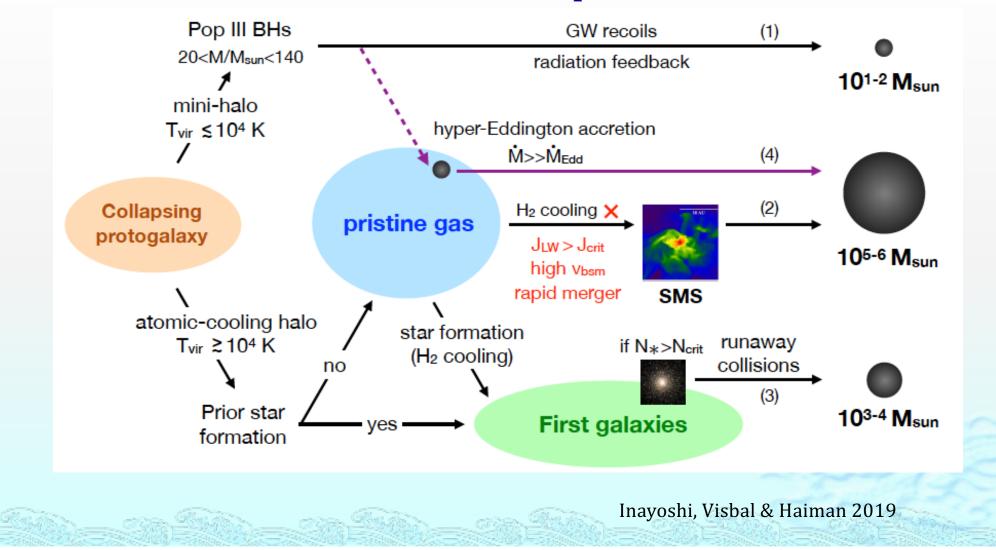
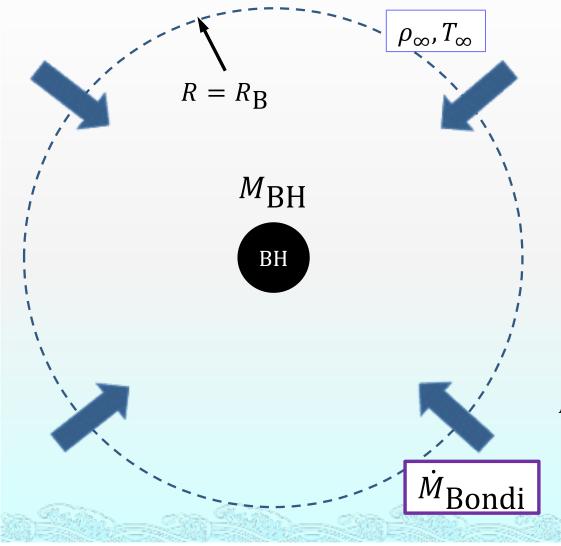

超巨大ブラックホールの超エディントン降着成長 における熱伝導の影響

川中 宣太 国立天文台 / 東京都立大学

References: NK & Kohri 2023, ApJ, 955, 67

ブラックホール大研究会~星質量から超巨大ブラックホールまで~ 2024.2.28 - 3.2


SMBHs at high redshifts

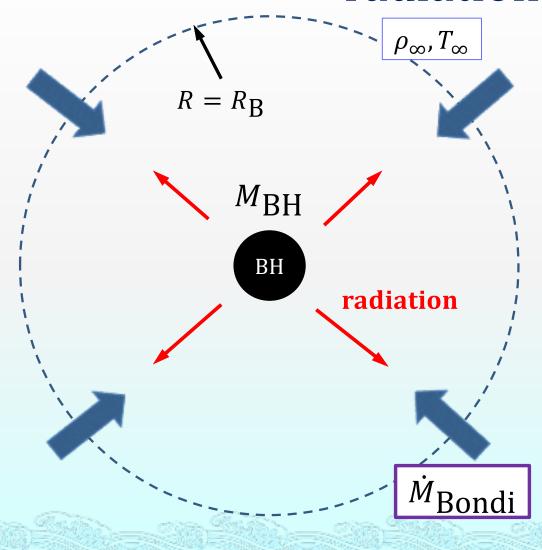

Li, Inayoshi, Onoue et al. 2023

- The observations of high redshift quasars poses a challenge to the theoretical models of SMBH growth
- Uninterrupted (super-) Eddington accretion onto seed BHs ($M_{BH} \sim 10 - 10^5 M_{\odot}$?) is needed
- They should be "rare".

SMBH formation processes

Bondi accretion

spherically symmetric accretion of ambient medium:


$$\dot{M}_{\text{Bondi}} \approx 4\pi R_{\text{B}}^2 \rho_{\infty} c_S$$

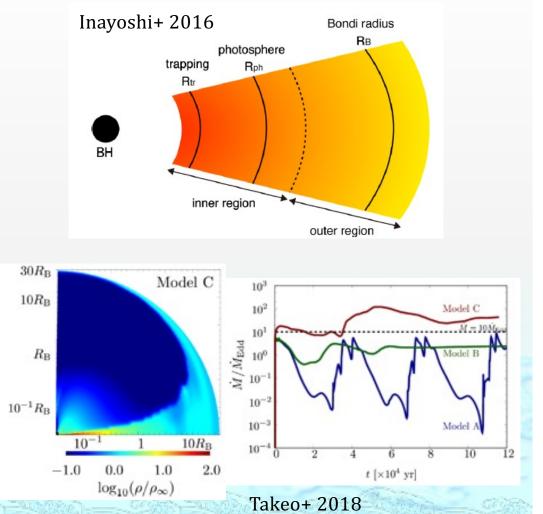
where

$$R_{\rm B} = \frac{GM_{\rm BH}}{c_s^2} \sim 1.97 \times 10^{18} \text{ cm } M_{\rm BH,4} T_{\infty,4}^{-1}$$

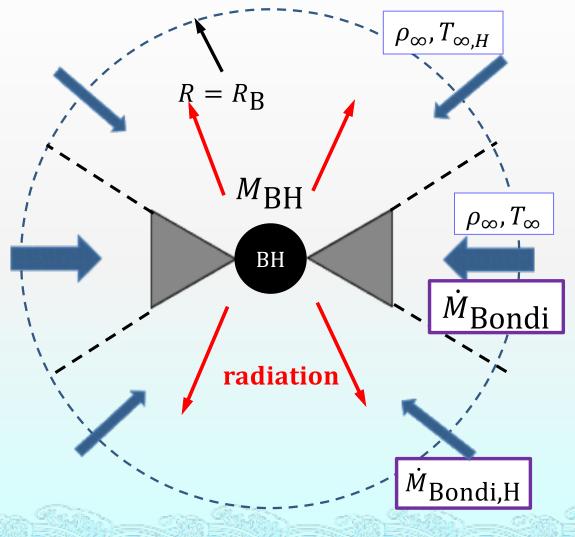
... Bondi radius

$$\dot{M}_{\text{Bondi}} / \dot{M}_{\text{Edd}} = 22M_{\text{BH},4}n_{\infty,4}T_{\infty,4}^{-3/2}$$

radiation feedback

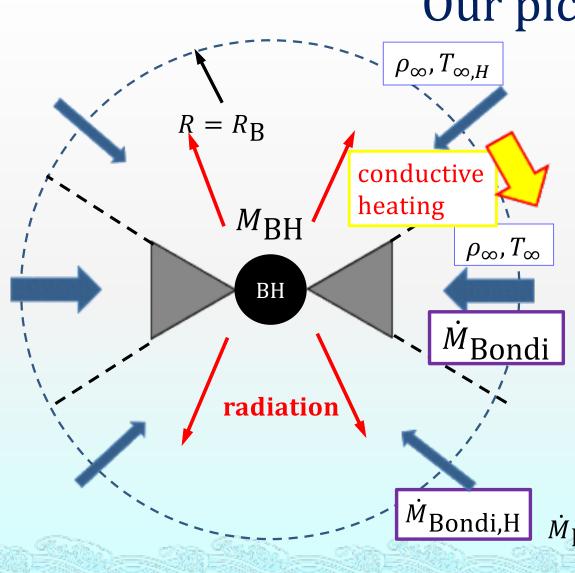


Intense mass accretion is always associated with intense radiation.


- radiation pressure (: super-Eddington)
- radiative heating (ionization, Compton scattering)
- → suppression of $\dot{M}_{\text{Bondi}} \propto T_{\infty}^{-3/2}$

How to avoid feedback effects

- In the spherically symmetric case, the feedback due to radiation pressure and heating can be ineffective because of photon trapping only when $\dot{M}_{\rm Bondi} \gg 1$ (Inayoshi et al. 2016).
- Due to the formation of an accretion disk, the radiation would be anisotropic and super-Eddington accretion through the equatorial plane is expected (Sugimura et al. 2017; Takeo, Inayoshi et al. 2018).


Mass accretion under anisotropic radiation

- super-Eddington accretion → formation of a geometrically thick disk (slim disk)
- The region around the equatorial plane do not suffer from radiative heating
- → \dot{M}_{Bondi} would not be suppressed within a certain solid angle around the equatorial plane and remains super-Eddington.

Motivation of this work

- Mass accretion onto a black hole is not in general isotropic but is disk-like, and so radiation from an accretion disk would be shielded by the disk itself
- → Gas within the shielded angle would not be heated and Bondi accretion rate would not be suppressed (Sugimura+ 2016; Takeo+ 2018 etc.)
- Can the gas behind the disk really avoid heating?
 - Non-radial radiation flux produced by electron scattering
 - ightarrow unlikely, because the ionized gas is optically thin
 - Heat conduction ← this work
 - Convection

Our picture

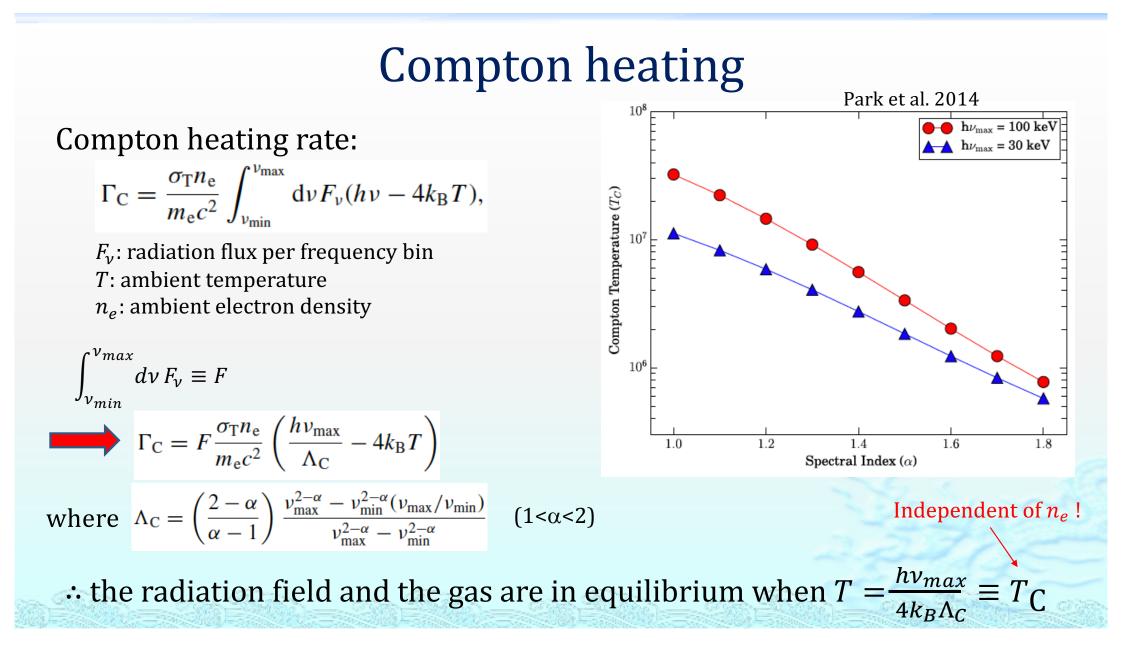
- $T_{\infty,H} \gg T_{\infty}$
- → heat conduction from the radiatively-heated region to the adjacent cold region can be significant
- → If the conduction is faster than the accretion, the surrounding medium would be isotropically heated → whole suppression of M_{Bondi}

 $\dot{M}_{\text{Bondi,H}} / \dot{M}_{\text{Edd}} = 7 \times 10^{-4} M_{\text{BH,4}} n_{\infty,4} T_{\infty,H,7}^{-3/2}$

About radiative heating

Bondi radius

$$R_{\rm B} \equiv \frac{GM_{\rm BH}}{c_{\infty}^2} \simeq 1.97 \times 10^{18} M_{\rm BH,4} T_{\infty,4}^{-1} \,\mathrm{cm},$$


ionization radius (i.e., the gas is fully ionized inside this radius)

$$R_{\rm H\,II} = \left(\frac{3Q_{\rm ion}}{4\pi\alpha_{\rm rec,B}n_{\infty}^2}\right)^{1/3}$$

Compton sphere (i.e., the gas inside is heated by Compton scattering)

$$R_{\text{Comp}}^{\Xi} = \left(\frac{L}{4\pi c \Xi_c nkT}\right)^{1/2} = 2.8 \times 10^8 R_G L_{40}^{1/2} n_4^{-1/2} T_4^{-1/2} m_3^{-1},$$

Krolik+ 1981; Wang, Chen & Hu 2006

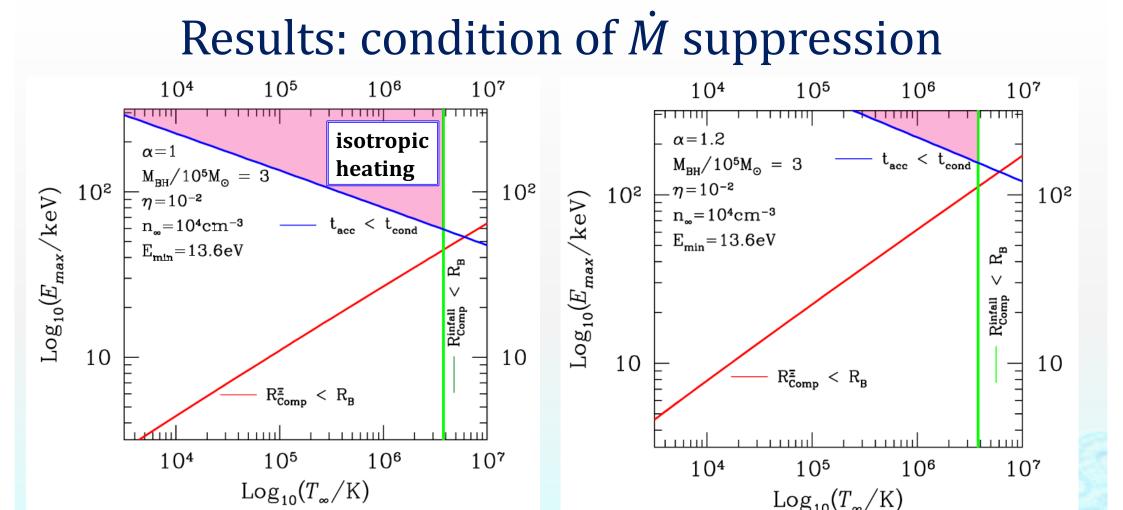
 $R_{\rm B} < R_{\rm HII} \text{ or } R_{\rm Comp}^{\Xi} \rightarrow$ necessary for the suppression of $\dot{M}_{\rm Bondi}$ (otherwise the gas in between $R_{\rm HII}$ ($R_{\rm Comp}^{\Xi}$) and $R_{\rm B}$ would accumulate and crush the bubble; Inayoshi+ 2016; Sugimura+ 2017)

Condition for suppression of Bondi accretion

1. The surrounding material outside of the Bondi radius is Compton-heated. $\rightarrow R_{\text{Comp}} \gtrsim R_{\text{B}}$

2. The conduction timescale at the Bondi radius is shorter than the accretion timescale $\rightarrow t_{acc} \gtrsim t_{cond}$

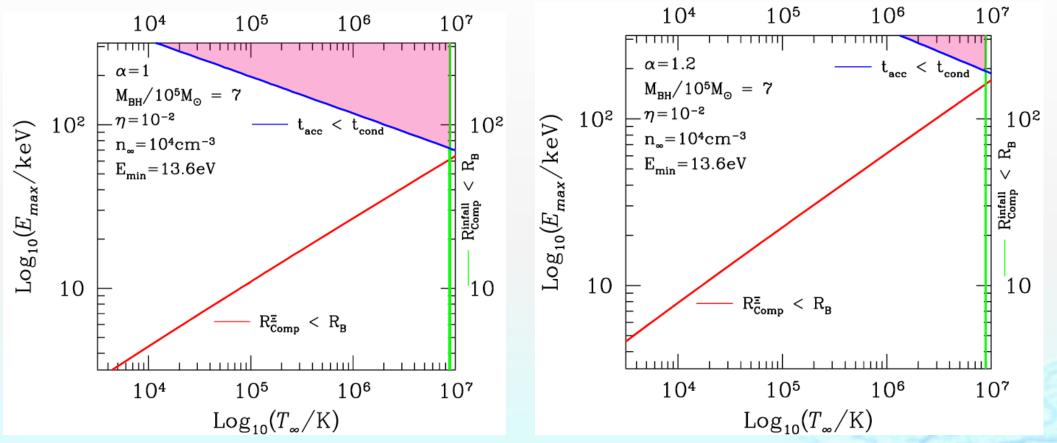
1. $R_{\text{Comp}} \gtrsim R_{\text{B}}$


Two kinds of the Compton radius:

(1)
$$R_{\text{Comp}}^{\Xi} = \left(\frac{L}{4\pi c \Xi_c n_{\infty} k T_{\infty}}\right)^{1/2}$$

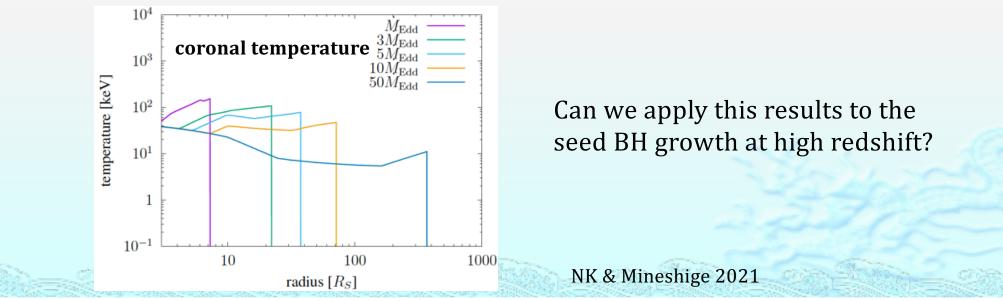
 $\simeq 8.5 \times 10^{16} \text{ cm } M_{\text{BH},2}^{1/2} \left(\frac{L}{L_{Edd}}\right)^{1/2} T_{C,7}^{3/4} n_{\infty,5}^{-1/2} T_{\infty,4}^{-1/2}$
(2) $t_c = \frac{6\pi m_e c^2 R^2}{\sigma_T L}, \ t_{\text{infall}} = \frac{R}{v_R} = \frac{R^{3/2}}{\sqrt{2GM_{BH}}}$
 $t_c = t_{\text{infall}}$
 $\Rightarrow R_{\text{Comp}}^{\text{infall}} = \frac{1}{2GM_{BH}} \left(\frac{\sigma_T L}{6\pi m_e c^2}\right)^2 \simeq 1.17 \times 10^{17} \text{ cm} M_{\text{BH},2} \left(\frac{L}{L_{Edd}}\right)^{1/2}$

2


 \rightarrow Compare them with $R_{\rm B} \simeq 1.97 \times 10^{16} {\rm cm} \, M_{\rm BH,2} T_{\infty,4}^{-1}$

2.
$$t_{acc} \gtrsim t_{cond}$$
 at $R = R_B$
 $t_{acc} \sim \sqrt{\frac{r^3}{GM_{BH}}} \approx 8.66 \times 10^9 \text{ s } M_{BH,2}^{-1/2} r_{16}^{3/2}$
 $t_{cond} \sim \frac{n_{\infty} k_B T_C \cdot r}{\kappa_{sp} T_C/r} \approx 2.4 \times 10^9 \text{ s } n_{\infty,5} T_{C,7}^{-5/2} r_{16}^2$
where $\kappa_{sp} \simeq 5.82 \times 10^{11} T_{C,7}^{5/2}$ (erg K⁻¹ cm⁻¹ s⁻¹) is the Spitzer's heat conductivity
 $t_{acc} \gtrsim t_{cond}$ at $R = R_B \iff M_{BH,5} n_{\infty,4} T_{\infty,4}^{-1/2} T_{C,7}^{-5/2} \lesssim 2.57 \times 10^{-2}$

high E_{max} , flatter spectrum of irradiation \rightarrow high T_{C} \rightarrow efficient conductive heating



high E_{max} , flatter spectrum of irradiation \rightarrow high T_{C} \rightarrow efficient conductive heating

Discussion

- What values of E_{\max} and α are relevant?
 - Comptonizing plasma (corona) in a super-Eddington accretion flow has lower temperature (T ∽ a few keV) and larger Thomson optical depth (τ_e ≥ 10) compared to that in a sub-Eddington accretion flow (NK & Mineshige 2021 etc.)
 - E_{max} may be significantly lower than ~ 100 keV and the X-ray spectrum may be steeper than typical AGNs (i.e., $\alpha \gtrsim 1$).

Summary

- We investigate how the heat conduction affects the growth of a seed of a supermassive black hole.
- When a geometrically thick accretion disk is formed and the radiation is anisotropic, it has been considered that super-Eddington accretion from the equatorial plane is possible. However, that region may be heated up through <u>conduction</u> from the adjacent heated region.
- We evaluate the condition of \dot{M} suppression due to conduction. If the irradiation spectrum is flat ($\alpha \sim 1$) and has a high E_{max} ($\geq 100 \text{ keV}$), the medium surrounding a BH is isotropically heated and \dot{M} would be sub-Eddington.