BH大研究会 2024/02/28-03/02 御殿場

### ブラックホール降着円盤の数値シミュレーション

### 朝比奈雄太(筑波大学) 大須賀健,内海碧人,上野航介 (筑波大学) 髙橋博之(駒澤大学)



#### **Contents**

- ブラックホール降着円盤の基礎と一般相対論的輻射磁気流体 (GR-RMHD)シミュレーション
- 2. 歳差運動する降着円盤シミュレーション
- 3. より正確に輻射場を解くための輻射輸送の解法
- 4. 機械学習の活用
- 5. まとめ

#### **Contents**

- 1. ブラックホール降着円盤の基礎と一般相対論的輻射磁気流体 (GR-RMHD)シミュレーション
- 2. 歳差運動する降着円盤シミュレーション
- 3. より正確に輻射場を解くための輻射輸送の解法
- 4. 機械学習の活用
- 5. まとめ

ブラックホール (BH) 降着円盤



- BH周囲のガスは降着円盤を形成し、回転しながら降着する
- 解放された重力エネルギーの一部は輻射エネルギーに変換される
- 質量降着率が高い場合には、**輻射力などの輻射の効果を考慮する必要がある**

ブラックホール (BH) 降着円盤



### 3種類の降着円盤



## 一般相対論的輻射磁気流体(GR-RMHD)方程式

質量保存則  $\frac{\partial(\rho u^t)}{\partial t} + \frac{\partial(\sqrt{-g}\rho u^i)}{\sqrt{-g}\partial x^i} = 0$ エネルギー・運動量保存則  $\frac{\partial T_{\nu}^{t}}{\partial t} + \frac{\partial \left(\sqrt{-g}T_{\nu}^{i}\right)}{\sqrt{-a}\partial x^{i}} - T_{\lambda}^{\kappa}\Gamma_{\nu\kappa}^{\lambda} = G_{\nu}$ 誘導方程式  $\frac{\partial \left(b^{t} u^{j} - b^{j} u^{t}\right)}{\partial t} + \frac{\partial \left[\sqrt{-g} \left(b^{i} u^{j} - b^{j} u^{i}\right)\right]}{\sqrt{-a} \partial x^{i}} = 0$  輻射

エネルギー・運動量保存則  
$$\frac{\partial R_{\nu}^{t}}{\partial t} + \frac{\partial \left(\sqrt{-g}R_{\nu}^{i}\right)}{\sqrt{-g}\partial x^{i}} - R_{\lambda}^{\kappa}\Gamma_{\nu\kappa}^{\lambda} = -G_{\nu}$$

輻射4元力*G<sub>v</sub>*を通じて磁気流体と 輻射は相互作用する。

# 輻射MHD計算による3種類の降着円盤の再現



Ohsuga et al. (2009,2011)

BH降着円盤系の主なパラメータ



# Blandford-Znajek (BZ) 機構

BZ機構:磁場を介して回転BHからエネ ルギーが引き抜かれる機構

(Blandford & Znajek, 1977)



K. Thorne, Black Holes and Time Warps (W.W.Norton and Company, 1994).

#### BHスピンが0と0.9のGR-RMHD計算の結

果 (Sadowski et al. 2014)



各種光度のBHスピン依存性

様々なBHスピンに対するGR-RMHD計算が実施された (Utsumi et al., 2022, 詳細は内海さんの講演)



- BZ機構によってBHスピンの絶対値の上昇に伴い、全光度と磁気エネルギーの 割合は上昇する
- 回転BHはより明るく輝き、より強力なジェットを噴出する可能性が

### **Contents**

### ブラックホール降着円盤の基礎と一般相対論的輻射磁気流体 (GR-RMHD)シミュレーション

#### 2. 歳差運動する降着円盤シミュレーション

- 3. より正確に輻射場を解くための輻射輸送の解法
- 4. 機械学習の活用
- 5. まとめ

歳差ジェットの電波観測

#### M87の歳差ジェット(周期は11年)



#### SS433歳差ジェット(周期は162日)



https://public.nrao.edu/radio-astronomy/black-holes/

Cui Yuzhu et al. (2023), https://www.cfca.nao.ac.jp/pr/20230928

# 光度の準周期振動 (QPOs)



- 振動数が約0.01 1 Hz程度のQPOsがULXs
   で観測されている
  - 例として**NGC1313 X-1**では約80 mHzのQPO が観測されている
- このようなQPOsは降着円盤の歳差運動に よって引き起こされている可能性が指摘され ている

# Lense-Thirring効果



- BHのスピン軸と降着円盤の回転軸が揃っていない場合、一般相対論的な時空の引きずりの効果によって、降着円盤が歳差運動する(Lense-Thirring効果)
- 降着円盤の歳差運動による周期的な見込み角の 変動によってQPOsが引き起こされている可能性 がある
- 歳差ジェットの原因となっている可能性もある



# 歳差運動する降着円盤のGR-MHD計算

**幾何的に薄い**降着円盤のGR-MHD計算 (Liska et al. 2019)



降着円盤がちぎれて歳差周期の短いinner sub-discと歳差周期の長いouter sub-disc が形成される

#### **幾何的に厚い**降着円盤のGR-MHD計算 (Liska et al. 2018)



## 歳差運動する降着円盤のGR-MHD計算

-10

# 歳差運動する降着円盤のGR-RMHD計算



- 強輻射場を考慮した3次元GR-RMHD計算を実施した(Asahina & Ohsuga, submitted)
- 初期条件は平衡トーラス (Fishbone & Moncrief, 1976)を30°傾けたトーラスを仮定した (Tilt angleと Precession angleは $\theta_{tilt}$  = 30°,  $\phi_{prec}$  = 180°)
- 初期トーラスの最大密度はp<sub>0</sub> = 1.4 × 10<sup>-2</sup> g cm<sup>-3</sup>
   を仮定した
- トーラス内に弱いポロイダル磁場を仮定した(プラ ズマβの最小値は100)
- 輻射過程はfree-free emission/absorptionとisotropic electron scatteringを考慮した

• 
$$M_{\rm BH} = 10 M_{\odot}$$
,  $a = 0.9 \sigma$ Kerr metricを仮定した

# 歳差運動する降着円盤のGR-RMHD計算



- 薄緑色は歳差運動する降着円盤、オレンジ色は光速の30%の速度を持つジェットを表している
- ・ 質量降着率が約300L<sub>Edd</sub>の超臨界降着円盤
   が形成された
- 先行研究と同様にジェットは降着円盤の
   回転軸方向に噴出しており、降着円盤と
   ともに歳差運動している

## 歳差運動する降着円盤のGR-RMHD計算

時間発展



先行研究と同様にジェットは降着円盤の回転軸方向に噴出しており、降着円盤とともに歳 差運動している

## ジェットや輻射エネルギーの 噴出方向の歳差角

**P: 降着円盤の回転軸の歳差角 ア**<sub>rad</sub>: 輻射エネルギーの噴出方向の歳差角

 **ア**<sub>kin</sub>: ジェットの噴出方向の歳差角

 **ア**<sub>mag</sub>: 磁気エネルギーの伝播方向の歳差角



- *P*<sub>rad</sub>, *P*<sub>kin</sub>, *P*<sub>mag</sub>は振動しながら平均的
   には時間と共に増加している
- 1.5秒間のPの増加量~65°よりわずかに小さいが、P<sub>rad</sub>, P<sub>kin</sub>, P<sub>mag</sub>は約50°程度増加している(周期は10秒程度)
- ジェットと輻射の噴出方向は降着円盤の 歳差運動と共に歳差運動している
- →このような歳差運動は約0.1HzのQPOs を説明しうる

歳差運動による増光と減光



- 光度は最大で約200倍程度明 るくなり、その後1/20程度ま で暗くなる
- 歳差運動が続くと仮定すると
   光度は周期的に振動すると予
   想できる
- このような周期振動の性質を 詳しく調べるためにはさらな る長時間シミュレーションが 必要である

#### **Contents**

- ブラックホール降着円盤の基礎と一般相対論的輻射磁気流体 (GR-RMHD)シミュレーション
- 2. 歳差運動する降着円盤シミュレーション
- 3. より正確に輻射場を解くための輻射輸送の解法
- 4. 機械学習の活用
- 5. まとめ



先行研究のGR-RMHDシミュレーションの多くは、計算コスト削減のため、 輻射輸送計算の解法として近似解法の1つであるM1法が用いられている。 M1法では光学的に薄い領域で、輻射輸送計算の信頼性が下がってしまう。



ビーム交差のテスト計算結果の輻射エネルギー密度分布

計算コードの発展



## 輻射輸送の数値解法

モーメント式

*I*:輻射強度 *n*:光子の伝播方向 *E<sub>r</sub>*:輻射エネルギー密度 *F<sup>i</sup>*:輻射エネルギー流束



モーメント式を解くためにはエディントンテンソル**f<sup>ij</sup>を決める必要がある** 

#### M1 closure

輻射輸送方程式

エディントンテンソルを輻射エネルギー 密度・流束から近似的に求める (Gonzalez et al. 2007)

$$f^{ij} = \frac{1 - \chi(E_r, F)}{2} \delta^{ij} + \frac{3\chi(E_r, F) - 1}{2} n^i n^j$$

#### INAZUMA

#### Variable Eddington Tensor closure

エディントンテンソルを輻射輸送方程式を 解いて得られた輻射強度から求める

$$f^{ij} = \frac{\int n^i n^j I \mathrm{d}\Omega}{\int I \mathrm{d}\Omega}$$

低降着率モデル ( $\dot{M}_{in} \sim 0.1 L_{Edd}/c^2$ )



- 赤道面に高密度な降着円盤、斜め方向に中密度の円盤風、回転軸付近に低密度の ファンネル領域が形成されるなど、大局的な構造はM1とINAZUMAで変わらない
- M1で回転軸付近の輻射エネルギー密度が小さくなっている。

# エディントンテンソルの比較 (高降着率モデル; M<sub>in</sub>~10<sup>4</sup>L<sub>Edd</sub>/c<sup>2</sup>)



- 実線より赤道面側の光学的に厚い領域では輻射はほぼ等方 (f<sup>(rr)</sup>~1/3)となる
- M1法では光学的に薄い回転軸近傍で、輻射が非物理的な衝突を起こし、輻射の伝 播方向がr方向に揃ってf<sup>(rr)</sup>が大きくなる
- INAZUMAでは回転軸付近での輻射の非物 理的な衝突が起きないためf<sup>(rr)</sup> ≥ 1/3と なる

## 見込み角による光度依存性

#### 半径 $r = 100 r_g$ の輻射フラックスから観測される輻射光度を計算した。

| 氏降着率モデル |  | 高降着率モデル |
|---------|--|---------|
|---------|--|---------|

|                       | INAZUMA                             | M1                         |                       | INAZUMA                 | M1                                       |
|-----------------------|-------------------------------------|----------------------------|-----------------------|-------------------------|------------------------------------------|
| $\theta \sim 0$       | $\sim 2 \times 10^{-3} L_{\rm Edd}$ | 0                          | $\theta \sim 0$       | ~ 10 L <sub>Edd</sub> < | <ul> <li>~ 60 L<sub>Edd</sub></li> </ul> |
| $\theta = 10^{\circ}$ | $\sim 2 \times 10^{-3} L_{\rm Edd}$ | $\sim 10^{-2} L_{\rm Edd}$ | $\theta = 10^{\circ}$ | ~ 20 L <sub>Edd</sub> < | <ul> <li>200 L<sub>Edd</sub></li> </ul>  |

- 低降着率モデルでは 0のとき、M1では輻射が回転軸まで届いていないので暗く見える
- M1では光度を5-10倍程度大きく見積もる可能性がある

### **Contents**

- ブラックホール降着円盤の基礎と一般相対論的輻射磁気流体 (GR-RMHD)シミュレーション
- 2. 歳差運動する降着円盤シミュレーション
- 3. より正確に輻射場を解くための輻射輸送の解法
- 4. 機械学習の活用

5. まとめ

# 輻射輸送を正確に解く機械学習モデルの開発

エディントンテンソルを正しく計算できれば、輻射輸送を正確に解くことができる! 超新星爆発分野で、エディントンテンソルを機械学習で予測する先行研究がある (Harada et al. 2022)。



上のDeep Neural Network (DNN)にINAZUMAの計算結果を学習させる

ビーム交差テスト

INAZUMAの時間発展データ(Asahina et al. 2020)を学習データとして用いた
 流体のパラメータ(ρ, p, u<sup>i</sup>)は一様となっている(学習に影響しない)



スナップショットの再現



機械学習モデルはf<sup>xy</sup>をほぼ正確に再現できており、典型的な相対誤差は 1%以下である 他の成分に関しても、機械学習モデルはほぼ正確に正解値を再現できた

DNNモデルを用いた時間発展シミュレーション



- DNNモデルを用いたシミュレーションでは輻射の非物理的な衝突を起こ すことなくビーム交差テストを解けている
- INAZUMAの約4倍の高速化に成功した
- BH降着円盤に適用した結果については午後のセッションの上野さんの講演をご覧ください

観測とシミュレーションを繋ぐ機械学習

#### **Deep Horizon** (Jefferey et al. 2020): BHシャドウの画像から物理パラメータを 復元する畳み込みNeural Network

 $M = 5.0e+09 M_{\odot}$ 



ビーム幅に対する依存性



まとめ

- 回転BHはBZ機構により、より明るく強力なジェットを形成した
- 歳差運動する降着円盤計算によって、輻射とジェットの噴出方向が 降着円盤と共に歳差運動することを示し、QPOsの原因になる可能 性を示した
- 輻射輸送方程式を解くことにより、降着円盤の回転軸付近の光学的
   に薄い領域の輻射場を正確に計算することができた
- エディントンテンソルを予測する機械学習により、高速で正確に輻射輸送を解くことができた
- Deep Horizonのようなシミュレーション結果と観測を結びつける機
   械学習も将来的に重要になってくるであろう