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Very rapid heating is required for chondrule formation based on discussions of the isotopic fractionation data in

AbStraet measured chondrules. In the case of shock-wave heating model, the gas drag heating which works in the post-shock
region can heat dust particles so rapidly. However, dust particles are also heated in the pre-shock region by radiation. The main sources
of radiation are gas and dust particles in the post-shock region. Can the shock-wave heating form chondrules? If yes, what conditions are
appropriate for chondrule formation? To answer these questions, we develop a new simulation code taking into account the radiation
transfer for gas line emission and dust continuum emission. Our calculation results show that the optically thin environment is
appropriate for chondrule formation. For example, shock-waves induced by the X-ray flare (talk of Taishi Nakamoto in this conference,
#9034) seem to show a good agreement with the heating rate constraint.
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Table 1. Upper limit of pre-shock optical depth estimated by eq. (2). From our
s < numerical calculation results, we find that f ~ 0.5-0.9 (depends on ny, v, size
Weak heating | ., , . Sy distribution, and Cy). If the pre-shock optical depth is larger than upper limit,
thatcannot | ., , i s dust temperature exceeds 1273K by the blanket effect in the pre-shock region.
melt dust . . For such optically thick condition, the heating rate becomes very small.
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PURPOSE OF THIS STUDY
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Our purpose is to calculate the heating rate of chondrule in the pre-
shock region. We develop a new simulation code (lida et al. 2001 +
radiation transfer) and calculated for chondrule-forming shock
conditions (A, B, C, and D in Figure 1). We change the dust to gas mass
ratio and size distribution of dust particles which are directly related to
the optical depth in pre-shock region.
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| Heating rate plotted as functions of optical depth. If the optical depth is larger than the upper
0'10 Power Iaw limit of optical depth listed in Table 1, the heating rate decreases drastically. In cases of shock
0.03 Lognormal conditions C and D, all cases show very rapid heating (~10°® K/hr), because the optical depth of
o 01 all cases is smaller than the upper limit of optical depth for each case.
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