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Abstract: Millimeter-sized, spherical silicate grains abundant in chondritic meteorites, which are called as chondrules, are considered to be a strong evidence of the melting event of silicate dust particles in the proto-planetary disk. One of the

most plausible scenarios is that the chondrule precursor dust particles are heated and melt in the high-velocity rarefied gas flow (shock-wave heating model). The hydrodynamics of the molten silicate dust particles in the gas flow are very

attractive issues: the internal flow tends to homogenize the chemical /isotopic abundances in the droplet, the surface deformation would relate to the external shapes of chondrules, the fragmentation by the gas drag force might determine the

maximum sizes of chondrules, and so forth. The notable feature that is not seen in general astrophysical hydrodynamics is the incompressibility of the molten droplet. Therefore, we have to consider the multi-phase fluids (incompressible

droplet and compressible ambient region). We developed the three-dimensional hydrodynamic code and simulated the hydrodynamics of millimeter-sized and incompressible molten silicate dust particles in the rarefied nebula gas flow. In the

meeting, we plan to introduce the shock-wave heating scenario for chondrule formation and how interest the molten droplet hydrodynamics are.

Introduction

Chondrule?: Chondrules are millimeter-sized, once-molten,

spherical-shaped grains mainly composed of silicate material. They

are abundant in chondritic meteorites, which are the ma jority of

meteorites falling onto the Earth. They are considered to have formed

from chondrule precursor dust particles about 4.56 x 10"9 yr ago in

the solar nebula (Amelin et

al. 2002); they were heated
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nebula and cooled again to

solidify in a short period of =~ Some mechanism heats
the dust. Dust melts

and becomes spherical

time (e.g., Jones et al. 2000 by surface tension.

Numerical Scheme

Basic Equations: Advection phase of Eq. of motion is solved by using

the CIP scheme, which is one of the high-accurate advection solver (e.g.,

Yabe et al. 2001). It is difficult to solve the non-advection phase because the
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pressure p is a strong function of the density p because of large sound

speed. The C-CUP scheme is one of the useful schemes to overcome this
problem (Yabe & Wang 1991, see right side of this poster). Eq. of continuity
is solved by the CIP-CSL2 scheme, which is the recent version of the CIP

scheme and guarantees a mass conservation (e.g., Nakamura et al. 2001).

Eq. of continuity| — + V - (pu) =0

surface tension

Eq. of motion| — + (u- V)u =

Coriolis force

ot p
Op
Eqg. of state| ——
dp apparent gravity
very large inside a droplet centrifugal force

(incompressibility)

Results

Deformation: When the gas flow meets the molten droplet, the gas pressure deforms the external shape of
droplet. We approximate the droplet shape as three-axial ellipsoid with radii of A, B,and C(A > B > C).
In this case, it is found that A = B from symmetry. To confirm the accuracy of our results, we compare the

axial ratio C/B with the analytic solution (Sekiya et al. 2003). They analytically derived the deformation

Shock-Wave Heating Model: Let us suppose there is a gas medium

Hydrodynamics of mm-sized Droplet: In the shock-wave heating

containing dust particles with a dynamical equilibrium, i.e. they do not have a model, the molten droplet is exposed to the high-velocity rarefied gas

relative velocity initially. And let us suppose a shock wave passes the medium. flow. The ram pressure of the gas flow causes some hydrodynamical

Then, the gas is accelerated by the gas pressure and obtains some amount of

phenomena on a mm-sized incompressible droplet; deformation, internal

velocity, while dust particles tend to remain the initial position. This causes the flow, fragmentation, and so forth. These hydrodynamical behaviors
relative velocity between the should affect the physical properties of final products (chondrules). We
dust particles and the gas. shock wave developed the three-dimensional hydrodynamic code to simulate the
When the relative velocity is in Solar nebula hydrodynamics of a ot ot e

resent, the frictional heatin nebula gas ( molten droplet Gas Flow T e Silicate Melt
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gas drag heating

Incompressibility: In the incompressible fluid with large sound speed, a negative value of velocity divergence (compression) results into the

extremely large increase of pressure. It makes the numerical solver unstable. To avoid this problem, we obtain a poisson equation for p(n+1) by

combining eq. of motion and eq. of

tate (Yabe & W 1991). First (1) Non-advection phase (2) after finite difference method
state (Yabe ang . First,
+1 _
we solve the combined equation %—? — —le u” u” _ ivpn—i—l
P At n
by appropriate method to obtain o 2 } S P 2 | }
pressure p(n+1), and then, a —pcsV - u A7 = —p"c;V - u™t

substituting p(n+1) to eq. of

motion to obtain u(n+1).

gas ram pressure

(3) combine two eqs.
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Solving above poisson equation for p"*!,
we obtain pressure for incompressible fluid.

Anti-diffusion: Discontinuity of the density profile at the interface between droplet and ambient region should be kept sharply (a). However, in

general, the numerical advection on fixed Eulerian p (@) initial profile (b) numerical diffusion

grids results into the numerical diffusion (b). To droplet density

recover sharp discontinuity, we re-distribute the

mass inside the cell from fewer one to more one (c).

(c) re-distribution (d) recover sharpness

-~ =7 ~mass flux - - = — =

This anti-diffusion technique can prevent the

numerical diffusion as the time step proceeds (d). NGt T i

ambient (gas) density

such prolate chondrules were observed (Tsuchiyama et al. 2003).

and the internal flow of the droplet assuming that the non-linear terms of the hydrodynamical equations

as well as the surface deformation are sufficiently small so that linearized equations are appropriate. We

found that our simulation results match well with the analytic solution when the deformation is not so

large.
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Negative Pressure: The hydrostatic pressure

is high at the part which is directly facing the
gas flow (pointed by A) and extremely low
around the center of eddies of the circulating
internal fluid motion (pointed by B). Generally,
it is considered that the boiling (or vaporization)
would take place in any liquids where the vapor
pressure of the liquid exceeds its hydrostatic
pressure. Since the hydrostatic pressure at the
center of eddies is almost zero, the boiling might
occur at the center of eddies. It is well known as

the cavitation.
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Effect of Droplet Rotation: We consider that the droplet rotates around the z-axis, which is perpendicular to the

direction of the gas flow. We found that the droplet shape becomes prolate when the rotation speed is much larger

than the droplet deformation (high-viscosity) and is not large as the centrifugas force does not dominate. Actually,
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panel (b) is just after the fragmentation. We found that the parent droplet breaks up to many smaller pieces. An upper

limit of chondrule sizes might be determined by the fragmentation (Susa & Nakamoto 2002).

(b) 0.143 sec

DB: avspl02500f1.3D

Cycle:

user: miura
Fri Aug 25 16:12:49 2006

Summary: We developed three-dimensional hydrodynamic code for multi-phase analysis (incompressible and

compressible). We applied this code to the shock-wave heating model for chondrule formation and showed the
importance of mm-sized hydrodynamics in the planetary formation scenario. In the future, we are planing to reveal the

chondrule formation histories and physical properties by using the hydrodynamic simulation.
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