原始惑星系円盤への外部輻射の影響

松本凜,福島肇(筑波大学)

2024.10.18-19 天体形成研究会2024 @ 筑波大学計算科学研究センター

Outline

- Introduction
- 解析的モデル
- 先行研究
- 計算手法
- 初期設定
- シミュレーション結果
- Summary

Introduction

中心星と周囲のガスで構成される、惑星形成の現場となる構造。 通常100万年程度のタイムスケールで、周囲のガスは中心星の輻射によって蒸発する。

星の形成環境 円盤外から大質量星による紫外線を受けた場合、円盤の外側のガスが光蒸発する。

外部輻射を受けた原始惑星系円盤の観測

異なる6つの波長で光蒸発する原始惑星系円盤を観測した結果

外部輻射による円盤のガス蒸発は、惑星形成を抑止する可能性がある。

◎ 原始惑星系円盤への外部輻射による光蒸発の解明

円盤の半径

外部輻射による円盤蒸発の構造は、蒸発を支配する光子の種類に依存する。 どちらの光子が支配的かは、PDRの厚さを示す x によって決まる。 R_d :
 円盤の半径

 xR_d :
 PDR領域の厚さ

 r_{IF} :
 電離面の半径

 r_S :
 衝撃波面の半径

 M :
 マッハ数

解析的モデル

位置*r*における速度 *v*、密度 *n*、平均分子量 m_l とすると $\dot{M} = 4\pi r^2 vnm_l$

R_d	:	円盤の半径(100[au])
$x R_d$	•	PDR領域の厚さ
r_{IF}	•	電離面の半径
r_{s}	:	衝撃波面の半径
a_I	:	PDRでの音速
m_I	•	PDR領域の平均分子量

原始惑星系円盤の外部輻射の影響については先行研究において2次元流体シミュレーションを用いて調べられている。

この計算を3次元に拡張することで、光子の放射方向に自由度を持たせる。

→ ガス円盤への影響まで考慮することが可能となり、より現実的な計算を行うことができる。

◎観測結果と比較 → 原始惑星系円盤における光蒸発の構造解明

用いる計算コード

流体の基礎方程式 輻射輸送方程式(MI-closure)

を解くことが可能な

適合格子細分化(AMR)法による自己重力磁気流体コード 「SFUMATO(Matsumoto 2007)」に

・非平衡化学

・熱進化
 (電離領域:電離加熱・輝線冷却 | PDR:光電効果・輝線冷却)

EUV、FUVに関する輻射計算

が組み込まれており、PDRの計算が可能なコードを用いる。 (Fukushima & Yajima 2021, Sugimura et al. 2020)

 中心星
質量を0.5 <i>M</i> _〇 に設定し、半径は30[au]とする。
ガス
以下の式で原始惑星系円盤の密度分布を設定 $n_H = n_0 \left(\frac{R}{1au}\right)^{-9/4} \exp\left[-\frac{z^2}{2h^2}\right]$ (Nakatani et.al 2018) $\therefore h(円盤の高さ) = \frac{C_S (音速)}{\Omega_k (ケプラー速度)}$ 円盤の半径は100[au]で計算領域の1/10程度とし、
円盤外部の密度は円盤の外側の1/100とする。 11

初期設定:Face On

Results : Face On

 $\mathcal{F}_{ISRF} = 1.6 \times 10^{-3} \text{ erg cm}^{-2} \text{s}^{-1}$ (星間空間内の平均的なエネルギーフラックス)

・ $F_{FUV} = 1.0 \times 10^1$, $10^5 F_{ISRF}$ では外部輻射によって電離領域が円盤付近まで近づいている: EUVが支配的な構造 ・ $F_{FUV} = 1.0 \times 10^3 F_{ISRF}$ ではPDR領域が広くなっている: FUVが支配的な構造

初期設定:Edge On

Results : Edge On

 $\mathcal{F}_{\text{ISRF}} = 1.6 \times 10^{-3} \text{ erg cm}^{-2} \text{s}^{-1}$ (星間空間内の平均的なエネルギーフラックス)

・Face Onと同様に $\mathcal{F}_{FUV} = 1.0 \times 10^{3} \mathcal{F}_{ISRF}$ においてFUVが支配的、 $\mathcal{F}_{FUV} = 1.0 \times 10^{1}, 10^{5} \mathcal{F}_{ISRF}$ においてEUVが支配的。 ・**円盤の回転方向**(z軸正の方向から見て反時計回り)に**歪み**が見られる。($\mathcal{F}_{FUV} = 1.0 \times 10^{5} \mathcal{F}_{ISRF}$ でより顕著) 15

初期設定:ななめ方向

Results:ななめ方向

 $\mathcal{F}_{ISRF} = 1.6 \times 10^{-3} \text{ erg cm}^{-2} \text{s}^{-1}$ (星間空間内の平均的なエネルギーフラックス)

・ななめ方向でも同様に $\mathcal{F}_{FUV} = 1.0 \times 10^{3} \mathcal{F}_{ISRF}$ においてFUV、 $\mathcal{F}_{FUV} = 1.0 \times 10^{1}, 10^{5} \mathcal{F}_{ISRF}$ においてEUVが支配的。 ・Edge Onでみられた円盤の歪みは、あまり見られない。

- ・蒸発率前の円盤内位置依存性を調べる。
- ・加熱源・冷却源の変化等のケミカル面の解析を行う。