

SCIMAS Software Controlled Integrated Memory Architecture for HPG

Background

- Memory wall problem
- Conventional Cache is not good in HPC
 - unwilling line conflict
 - fixed size of Off-Chip Memory access

Solution: SCIMA (Software Controlled Integrated Memory Architecture)

- Strategy: software controllability
- Addressable On-Chip Memory in addition to conventional cache
 - On-Chip Memory and cache are reconfigurable
- Explicit data transfer between On-Chip Memory and Off-Chip Memory by page-load/page-store instruction
 - burst transfer and stride transfer are supported

advantages of SCIMA

Tb: CPU busy time

Ti: Latency stall time

Tt: Throughput stall time

On-Chip Memory Features	T_b	Tı	T_t
software controllability	-	-	1
page-load/page-store(burst)	†	1	-
page-load/page-store(stride)	1	1	1
scheduling for page-load/page-store	-	+	-
Latency Tolerating Techniques of Cache	T_b	Ti	T_t
larger cache line	-	1	1
lock-up free cache	-	1	1
cache prefetching	†	1	1

Schematic View

Overview of SCIMA

Address Space