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1. Introduction

Motivation :
Understand nuclear force from lattice QCD

We need to study not only scattering state, but bound state on lattice.

nn scattering, Deuteron(np bound state)

However, it is difficult to study bound state like Deuteron,

because binding energy is very small, (-2.22 MeV).

1



Difficulty on finite volume

In infinite volume;

Binding energy (M : bound state energy, 2m: threshold)

∆E = M − 2m < 0 6= 0

Above threshold continuous scattering states exist.

Lowest scattering state energy = threshold (2m).

We can identify bound state from negative, non-zero energy shift.
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Difficulty on finite volume(cont’d.)

On finite volume;

Binding energy (M : bound state energy, 2m: threshold)

∆E = M − 2m < 0 6= 0

Continuous scattering state is discretized due to finite volume.

Lowest scattering state energy 6= threshold (2m) due to finite volume

effect.
∆E0 = E0 − 2m = O(1/L3)

S-wave scattering system;

Sign of ∆E0 is determined by scattering length a0.

∆E0 < 0 for attractive interaction (I = 0 ππ)

∆E0 > 0 for repulsive interaction (I = 2 ππ)

In very small ∆E case, it is hard to identify bound state from negative,

non-zero energy shift, because ∆E0 < 0 in attractive interaction case.
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Various methods

Method 1. Finite volume effect of ground state energy

Finite volume effect of bound state differs from one of scattering state.

Lowest scattering state

2m + O(1/L3)

Lüscher Commun. Math. Phys. 105(1989) 153; Nucl. Phys. B354(1991) 531

Bound state (M = 2m + ∆E,∆E < 0)

2m + ∆E + O(e−CL/L) (C > 0)

Beane it et al., Phys. Lett. B585(2004) 106

We can identify bound state from finite volume dependence of energy.
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Various methods (cont’d.)

Method 2. Anti-periodic boundary condition (spatial direction)

N. Ishii et al. Phys. Rev. D71(2005) 034001

Scattering state

Lowest scattering state energy strongly depends on spatial boundary con-

dition

Periodic boundary E0 = 2m pi = π/L · 2ni

Anti-periodic boundary E0 = 2
√

m2 + (π/L)2 pi = π/L · (2ni + 1)

Bound state

Energy is not strongly affected by boundary condition.

We can determine bound state from response of spatial boundary condi-

tion.

Other method: Spectral weight Mathur et al. Phys. Rev. D70(2004) 074508

Volume dependence of point-point correlation function
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Property of bound state

We focus on two properties of bound state to identify state on finite

volume.

A. Scattering phase shift δ0 of bound state

tan δ0(k) + i = 0, k2 = (M2 − 4m2)/4 < 0

We investigate that δ0 satisfies condition or not.

B. Difference of scattering length a0

np 1S0 channel a0 = +23.7 fm (attractive scattering system)

np 3S1 channel a0 = −5.47 fm (system including bound state)

Lowest scattering state corresponds to first excited state of bound

system. (Ground state is bound state.)

Finite volume effect of scattering state is determined by sign of

a0(tan δ0), so that difference of sign would be useful to distinguish

bound and scattering system.
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Purpose

We apply two methods

Method A. Condition of scattering phase shift δ0(k)

Method B. Finite volume effect of first excited state

for simple known bound(large binding enegy) and scattering systems to

investigate whether we can distinguish bound and scattering states or

not.

Simple bound and scattering system

Scalar QED (Abelian-Higgs) with quenched approximation

It is easy to control system by changing parameters.
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Methods

Method A. Condition of scattering phase shift δ0(k)

δ0(k) satisfies condition at bound state energy M

tan δ0(k) + i = 0

k2 = (M2 − 4m2)/4 = −κ2 < 0

Using analytic continuation of δ0(k)

tan δ0(iκ) = i tanσ0(κ),

equation is replaced by

i tanσ0(κ) + i = 0

Then we obtain condition of bound state

σ0(κ) = −π/4
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Method A. (cont’d.)

We can determine σ0(κ) by using Lüscher’s finite volume method.

Lüscher Commun. Nucl. Phys. B354(1991) 531

δ0(k) and σ0(κ) are evaluated from

two-particle and bound state energies on finite volume E2 = 4(m2 + k2)

Usual scattering system k2 > 0;

tan δ0(k) =
qπ3/2

Z00(1; q2)

Lowest attractive scattering state and bound state k2 = −κ2 < 0;

tanσ0(κ) =

√

|q2|π3/2

Z00(1; q2)

Zeta function

Z00(n; q2) =
1√
4π

∑

~l∈Z3

1

(l2 − q2)n
, q2 = (kL/2π)2
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Method A. (cont’d.)

Bound state: −κ2 6= 0 in L → ∞ ⇐⇒ q2 = −(κL/2π)2 → −∞.

Behavior of zeta function at q2 → −∞ was investigated.
Beane it et al., Phys. Lett. B585(2004) 106

Z00(1; q2) = −π3/2
√

|q2| +
∑

~n∈Z3

π1/2

2
√

n2
e−2π

√

|q2|n2

at q2 < 0 Elizalde, Commun. Math. Phys. 198(1998) 83

Then at large L

tanσ0(κ) =

√

|q2|π3/2

−π3/2
√

|q2| + O
(

e−
√

|q2|
)

= −1 − O
(

e−
√

|q2|/
√

|q2|
)

We can obtain σ0(κ) = −π/4 only at L → ∞.

On finite (large) L

σ0(κ) = −π/4 − ε (ε > 0, ε → 0 as L → ∞)

We investigate σ0 satisfies the condition.
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Method B. Finite volume effect of first excited state
Scattering length a0 = lim

p→0
tan δ0(k)/k
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Plots from NN-OnLine (http://nn-online.org/)

Sign of a0 in bound system (np 3S1) is different from one in scattering

system (np 1S0).

In scattering system, π/2 > δ0(k) ≥ 0 ⇐⇒ tan δ0(k) ≥ 0.

Sign of finite volume effect of scattering state is determined by sign of

tan δ0(p).

scattering system ∆En < 0, but bound system ∆E0 > 0
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Method B. (cont’d.)

scattering system ∆En < 0, but bound system ∆E0 > 0

n state : scattering state with En = 2
√

m2 + n · (2π/L)2 + ∆En

∆E scattering (state) bound (state)

ground state ∆E0 < 0 (n = 0) ∆E < 0 (bound)

first excited state ∆E1 < 0 (n = 1) ∆E0 > 0 (n = 0)

1st state approach from below from above
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We can identify bound system from energy shift of scattering state, i.e.,

first excited state in system.
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Method A.
σ0(κ) from bound state energy E

σ0(κ) = −π/4 − ε (ε > 0, ε → 0 as L → ∞)

Method B.
First excited energy goes to threshold from above as L increases.

Energy shift is positive, corresponding to a0 < 0
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Extraction of first excited state

In Method B. extraction of first excited state is important.

However, we cannot obtain first excited state by a naive exponential

analysis.

Diagonalization method Lüsher and Wolff, Nucl. Phys. B339(1990) 222

four point function matrix Gij(t) = 〈0|Ω†
i(t)Ωj(0)|0〉

M(t, t0)wν = e−Eν(t−t0)wν

We extract ground and first excited states energy from eigenvalues of

matrix M(t, t0)

M(t, t0) = G−1/2(t0)G(t)G−1/2(t0), t0 : reference point
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Scalar QED
Important assumption of finite volume method

Short range interaction V (r) = O
(

e−r
)

≈ 0 in r > R, R < L/2

Scalar QED (Abelian-Higgs) with |Φx| = 1

S = −β
∑

Re (Ux,µν) − h
∑

Re
(

Φ∗
xUx,µΦx+µ

)

In Higgs phase

• Coulomb potential is screened

V (r) =
g2

4π

e−MAr

r
, MA =

√

h/β (Tree level)

• Easy to control bound state formation with charge q

Charge of fermions are controlled by U
q
x,µ

Uq
x,µ = Π

q
i=1Ux,µ

in Wilson Dirac operator.
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Simulation parameters

• Wilson gauge and Wilson fermion actions

• quenched approximation

• β = 2.0 and h = 0.6 (Higgs phase)

• charge q = 3(scattering) and 4(bound)

• fixed fermion mass m ≈ 0.5

• fixed temporal size T = 32

• four spatial volumes
L 16 20 24 28

conf. 640 512 408 312

• Landau gauge fixing

• periodic + anti-periodic boundary for temporal direction
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Two-particle operators

q-q scattering and bound state(positronium) in 1S0 (pion) channel

Two-particle interaction is attractive.

Diagonalization of 3 × 3 matrix

point ΩP =
∑

~x

q(~x)γ5q(~x)

wall ΩW =
∑

~x,~y

q(~x)γ5q(~y)

mom ΩM =
∑

~x,~y

q(~x)γ5q(~y)ei~p·(~x−~y) with |p| = 2π/L

We expect each operator has better overlap to appropriate states.

ΩP bound state
ΩW n = 0 scattering state
ΩM n = 1 scattering state

We analyze lowest two energies in both systems.
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Results

Method 1. Finite volume effect of ground state

Effective masses for diagonal parts of Gij
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In q = 3 case, WW and MM correlators have better overlap to n = 0 and

n = 1 scattering states, respectively.

In q = 4 case, PP correlator has clear plateau.
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Method 1. (cont’d)

Difference of volume dependence for ground state energy
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binding energy

using WW correlators using PP correlators

q = 3 case, energy moves toward threshold as volume increases, and can

be reasonably fitted by A + B/L3.

q = 4 case, very large energy difference is seen which corresponds to large

binding energy, and energy is almost constant as function of volume.
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Method 2. Anti-periodic boundary

Anti-periodic boundary conditions in three spatial directions

Momentum is discretized by odd integer pi = π/L · (2ni + 1)

Ground two-particle state has non-zero momentum.

Similar three operators are employed as in periodic case.

point ΩP =
∑

~x

q(~x)γ5q(~x)

mom1 ΩM1
=

∑

~x,~y

q(~x)γ5q(~y)ei~p1·(~x−~y) with ~p1L/π = (1,1,1)

mom3 ΩM3
=

∑

~x,~y

q(~x)γ5q(~y)ei~p3·(~x−~y) with ~p3L/π = (3,1,1)
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Method 2. (cont’d)

Effective masses of each correlators
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M1M1 and PP correlators has better overlap in q = 3 and q = 4 as ex-

pected.

Clear signals of ground state are seen in both q = 3 and q = 4 cases.
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Method 2. (cont’d)
Comparison of periodic and anti-periodic calculations

Effective masses of ground state with both boundary conditions
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While significant difference is seen in q = 3, effective masses agree with

each other.

From results of Method 1. and 2.

q = 3 → scattering system and q = 4 → bound system
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Method A. Scattering phase shift σ0(κ)
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Scattering system case

lim
κ→0

tanσ0(κ)

κ
= lim

k→0

tan δ0(k)

k
= a0

where −κ2 = k2

Assumption κ � 1

σ0(κ) ≈ δ0(κ)

σ0(κ) is positive, and goes to

origin as L increases.

a0 is positive in scattering system.
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Method A. (cont’d)
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Method A. (cont’d)
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Bound system case

σ0(κ) is close to −π/4, and in-

creases with increasing L as ex-

pected.

However, σ0(κ) 6= −π/4 even

at largest volume.

In bound system σ0(κ) = −π/4 − ε
ε > 0 and ε → 0 as L → ∞
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Method A. (cont’d)
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Method A. (summary)
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From ground state energy

positive a0 and δ0(k) in scattering system

negative σ0(κ) = −π/4 − ε in bound system
ε > 0 and ε → 0 as L → ∞
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Diagonalization in scattering system

Effective masses for diagonal part of Gij and eigenvalues of Mij
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Energy of ν = 2 state has huge error, and ν = 2 state is not used in

analysis.
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Diagonalization in scattering system (cont’d)

Effective masses for diagonal part of Gij and eigenvalues of Mij
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Diagonalization is not effective for ground state in both L, while it is ef-

fective for first excited state in smaller L.

In larger L contamination of other state in MM correlator may decrease,

so that diagonalization is less effective.

I = 2 ππ scattering calculation, CP-PACS, Phys. Rev. D67(2003) 014502



Diagonalization in bound system

Effective masses for diagonal part of Gij and eigenvalues of Mij
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Energy of ν = 2 state has huge error, and ν = 2 state is not used in

analysis.
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Diagonalization in bound system (cont’d)

Effective masses for diagonal part of Gij and eigenvalues of Mij
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Diagonalization is not effective in ground state as well as q = 3 case,

while it is effective in first excited state even at largest volume.

Error of first excited state is large in both volumes.



Method B. Finite volume effect of first excited state

Difference of volume dependence for first excited state
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In scattering system energy converges to n = 1 noninteracting energy

2
√

m2 + (2π/L)2, while in bound system energy seems to converge to

threshold.

Energy shift is positive(negative) in bound(scattering) system as ex-

pected.
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Method B. (cont’d)

Scattering phase shift δ0(k)
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δ0(k) decreases(increases) in bound(scattering) system as k increases.

This means

a0 is negative in bound system.

30



Summary of Method A. and B.

scattering system bound system
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Positive a0 and δ0 in scattering system.

σ0(κ) = −π/4 − ε (ε > 0 and ε → 0 as L → ∞) from ground state,

and negative a0 from first excited state in bound system.

We can distinguish bound and scattering systems by inves-
tigating scattering phase shift (or volume effect) for ground
and first excited states.
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Summary

• We investigate property of system including bound state, and try to

identify bound system with two methods.

• From ground state energy we find scattering phase shift σ0(κ) is close

to −π/4 and increases as volume increases.

• From first excited energy we find energy shift is positive, and scatter-

ing length a0 is negative.

• These two volume effects are useful to distinguish between bound and

scattering system.

• Finite volume effect of first excited state energy seems to be useful

in small binding energy case.
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Summary (cont’d)

∆E scattering (state) bound (state)

ground state ∆E0 < 0 (n = 0) ∆E < 0 (bound)

first excited state ∆E1 < 0 (n = 1) ∆E0 > 0 (n = 0)

1st state approach from below from above
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We can identify bound system from energy shift of scattering state, i.e.,

first excited state in system.
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Behavior of q2 = (kL/2π)2 at large L (ε > 0)

q2 scattering (state) bound (state)

ground state 0 − ε (n = 0) −L2 (bound)

first excited state 1 − ε (n = 1) 0 + ε (n = 0)
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Volume dependence of q2 is significantly different between two systems.


