Study of bound state in compact scalar QED

Takeshi YAMAZAKI
RIKEN BNL Research Center
and
Shoichi SASAKI
(RBRC/Univ. of Tokyo)
Preliminary result in hep-lat/0510032
4th ILFTN Workshop " Lattice QCD via International Research Network"
© The Graduate University for Advanced Studies(Sokendai)
March 8-11, 2006

1. Introduction

Motivation :
 Understand nuclear force from lattice QCD

We need to study not only scattering state, but bound state on lattice. $n n$ scattering, Deuteron($n p$ bound state)

However, it is difficult to study bound state like Deuteron, because binding energy is very small, (-2.22 MeV).

Difficulty on finite volume

In infinite volume;

Binding energy (M : bound state energy, $2 m$: threshold)

$$
\Delta E=M-2 m<0 \neq 0
$$

Above threshold continuous scattering states exist.
Lowest scattering state energy $=$ threshold ($2 m$).

We can identify bound state from negative, non-zero energy shift.

Difficulty on finite volume(cont'd.)

On finite volume;
Binding energy (M : bound state energy, $2 m$: threshold)

$$
\Delta E=M-2 m<0 \neq 0
$$

Continuous scattering state is discretized due to finite volume. Lowest scattering state energy \neq threshold ($2 m$) due to finite volume effect.

$$
\Delta E_{0}=E_{0}-2 m=\mathcal{O}\left(1 / L^{3}\right)
$$

S-wave scattering system;
Sign of ΔE_{0} is determined by scattering length a_{0}.

$$
\begin{aligned}
& \Delta E_{0}<0 \text { for attractive interaction }(I=0 \pi \pi) \\
& \Delta E_{0}>0 \text { for repulsive interaction }(I=2 \pi \pi)
\end{aligned}
$$

In very small ΔE case, it is hard to identify bound state from negative, non-zero energy shift, because $\Delta E_{0}<0$ in attractive interaction case.

Various methods

Method 1. Finite volume effect of ground state energy

Finite volume effect of bound state differs from one of scattering state.

Lowest scattering state

$$
2 m+\mathcal{O}\left(1 / L^{3}\right)
$$

Lüscher Commun. Math. Phys. 105(1989) 153; Nucl. Phys. B354(1991) 531

Bound state ($M=2 m+\Delta E, \Delta E<0$)

$$
2 m+\Delta E+\mathcal{O}\left(\mathrm{e}^{-C L} / L\right) \quad(C>0)
$$

Beane it et al., Phys. Lett. B585(2004) 106

We can identify bound state from finite volume dependence of energy.

Various methods (cont'd.)

Method 2. Anti-periodic boundary condition (spatial direction)
N. Ishii et al. Phys. Rev. D71(2005) 034001

Scattering state
Lowest scattering state energy strongly depends on spatial boundary condition

Periodic boundary $E_{0}=2 m$
$p_{i}=\pi / L \cdot 2 n_{i}$
Anti-periodic boundary $E_{0}=2 \sqrt{m^{2}+(\pi / L)^{2}} \quad p_{i}=\pi / L \cdot\left(2 n_{i}+1\right)$
Bound state
Energy is not strongly affected by boundary condition.
We can determine bound state from response of spatial boundary condition.

Other method: Spectral weight Mathur et al. Phys. Rev. D70(2004) 074508 Volume dependence of point-point correlation function

Property of bound state

We focus on two properties of bound state to identify state on finite volume.
A. Scattering phase shift δ_{0} of bound state

$$
\tan \delta_{0}(k)+i=0, \quad k^{2}=\left(M^{2}-4 m^{2}\right) / 4<0
$$

We investigate that δ_{0} satisfies condition or not.
B. Difference of scattering length a_{0}
$n p{ }^{1} S_{0}$ channel $a_{0}=+23.7 \mathrm{fm}$ (attractive scattering system) $n p^{3} S_{1}$ channel $a_{0}=-5.47 \mathrm{fm}$ (system including bound state)
Lowest scattering state corresponds to first excited state of bound system. (Ground state is bound state.)
Finite volume effect of scattering state is determined by sign of $a_{0}\left(\tan \delta_{0}\right)$, so that difference of sign would be useful to distinguish bound and scattering system.

Property of bound state

We focus on two properties of bound state to identify state on finite volume.
A. Scattering phase shift δ_{0} of bound state

$$
\tan \delta_{0}(k)+i=0, \quad k^{2}=\left(M^{2}-4 m^{2}\right) / 4<0
$$

We investigate that δ_{0} satisfies condition or not.
B. Difference of scattering length a_{0}

$$
\begin{aligned}
& n p^{1} S_{0} \text { channel } a_{0}=+23.7 \mathrm{fm} \text { (scattering system) } \\
& n p^{3} S_{1} \text { channel } a_{0}=-5.47 \mathrm{fm} \text { (bound system) }
\end{aligned}
$$

Lowest scattering state corresponds to first excited state of bound system. (Ground state is bound state.)
Finite volume effect of scattering state is determined by sign of $a_{0}\left(\tan \delta_{0}\right)$, so that difference of sign would be useful to distinguish bound and scattering system.

Purpose

We apply two methods
Method A. Condition of scattering phase shift $\delta_{0}(k)$
Method B. Finite volume effect of first excited state
for simple known bound(large binding enegy) and scattering systems to investigate whether we can distinguish bound and scattering states or not.

Simple bound and scattering system
Scalar QED (Abelian-Higgs) with quenched approximation
It is easy to control system by changing parameters.

Outline

1. Introduction
2. Methods
3. Simulation parameters
4. Results

- Method 1 and 2
- Method A
- Method B

5. Summary

Methods

Method A. Condition of scattering phase shift $\delta_{0}(k)$
$\delta_{0}(k)$ satisfies condition at bound state energy M

$$
\begin{aligned}
\tan \delta_{0}(k)+i & =0 \\
k^{2}=\left(M^{2}-4 m^{2}\right) / 4 & =-\kappa^{2}<0
\end{aligned}
$$

Using analytic continuation of $\delta_{0}(k)$

$$
\tan \delta_{0}(i \kappa)=i \tan \sigma_{0}(\kappa)
$$

equation is replaced by

$$
i \tan \sigma_{0}(\kappa)+i=0
$$

Then we obtain condition of bound state

$$
\sigma_{0}(\kappa)=-\pi / 4
$$

Method A. (cont'd.)
We can determine $\sigma_{0}(\kappa)$ by using Lüscher's finite volume method.
$\delta_{0}(k)$ and $\sigma_{0}(\kappa)$ are evaluated from
two-particle and bound state energies on finite volume $E^{2}=4\left(m^{2}+k^{2}\right)$
Usual scattering system $k^{2}>0$;

$$
\tan \delta_{0}(k)=\frac{q \pi^{3 / 2}}{Z_{00}\left(1 ; q^{2}\right)}
$$

Lowest attractive scattering state and bound state $k^{2}=-\kappa^{2}<0$;

$$
\tan \sigma_{0}(\kappa)=\frac{\sqrt{\left|q^{2}\right|} \pi^{3 / 2}}{Z_{00}\left(1 ; q^{2}\right)}
$$

Zeta function

$$
Z_{00}\left(n ; q^{2}\right)=\frac{1}{\sqrt{4 \pi}} \sum_{\vec{l} \in Z^{3}} \frac{1}{\left(l^{2}-q^{2}\right)^{n}}, \quad q^{2}=(k L / 2 \pi)^{2}
$$

Method A. (cont'd.)
Bound state: $-\kappa^{2} \neq 0$ in $L \rightarrow \infty \Longleftrightarrow q^{2}=-(\kappa L / 2 \pi)^{2} \rightarrow-\infty$.
Behavior of zeta function at $q^{2} \rightarrow-\infty$ was investigated.
Beane it et al., Phys. Lett. B585(2004) 106

$$
Z_{00}\left(1 ; q^{2}\right)=-\pi^{3 / 2} \sqrt{\left|q^{2}\right|}+\sum_{\vec{n} \in Z^{3}} \frac{\pi^{1 / 2}}{2 \sqrt{n^{2}}} \mathrm{e}^{-2 \pi \sqrt{\left|q^{2}\right| n^{2}}}
$$

at $q^{2}<0$ Elizalde, Commun. Math. Phys. 198(1998) 83
Then at large L

$$
\begin{aligned}
\tan \sigma_{0}(\kappa) & =\frac{\sqrt{\left|q^{2}\right|} \pi^{3 / 2}}{-\pi^{3 / 2} \sqrt{\left|q^{2}\right|}+\mathcal{O}\left(\mathrm{e}^{-\sqrt{\left|q^{2}\right|}}\right)} \\
& =-1-\mathcal{O}\left(\mathrm{e}^{-\sqrt{\left|q^{2}\right|}} / \sqrt{\left|q^{2}\right|}\right)
\end{aligned}
$$

We can obtain $\sigma_{0}(\kappa)=-\pi / 4$ only at $L \rightarrow \infty$.
On finite (large) L

$$
\sigma_{0}(\kappa)=-\pi / 4-\varepsilon \quad(\varepsilon>0, \varepsilon \rightarrow 0 \text { as } L \rightarrow \infty)
$$

We investigate σ_{0} satisfies the condition.

Method B. Finite volume effect of first excited state

 Scattering length $a_{0}=\lim _{p \rightarrow 0} \tan \delta_{0}(k) / k$

Plots from NN-OnLine (http://nn-online.org/)
Sign of a_{0} in bound system ($n p^{3} S_{1}$) is different from one in scattering system ($n p{ }^{1} S_{0}$).
In scattering system, $\pi / 2>\delta_{0}(k) \geq 0 \Longleftrightarrow \tan \delta_{0}(k) \geq 0$.
Sign of finite volume effect of scattering state is determined by sign of $\tan \delta_{0}(p)$.
scattering system $\Delta E_{n}<0$, but bound system $\Delta E_{0}>0$

Method B. (cont'd.)

scattering system $\Delta E_{n}<0$, but bound system $\Delta E_{0}>0$
n state : scattering state with $E_{n}=2 \sqrt{m^{2}+n \cdot(2 \pi / L)^{2}}+\Delta E_{n}$

ΔE	scattering (state)	bound	(state)
ground state	$\Delta E_{0}<0$	$(n=0)$	$\Delta E<0$
(bound)			
first excited state	$\Delta E_{1}<0 \quad(n=1)$	$\Delta E_{0}>0 \quad$ ($n=0$)	
1st state approach	from below	from above	

We can identify bound system from energy shift of scattering state, i.e., first excited state in system.

Method A.
$\sigma_{0}(\kappa)$ from bound state energy E

$$
\sigma_{0}(\kappa)=-\pi / 4-\varepsilon \quad(\varepsilon>0, \varepsilon \rightarrow 0 \text { as } L \rightarrow \infty)
$$

Method B.

First excited energy goes to threshold from above as L increases. Energy shift is positive, corresponding to $a_{0}<0$

Extraction of first excited state

In Method B. extraction of first excited state is important. However, we cannot obtain first excited state by a naive exponential analysis.

Diagonalization method Lüsher and Wolff, Nucl. Phys. B339(1990) 222 four point function matrix $G_{i j}(t)=\langle 0| \Omega_{i}^{\dagger}(t) \Omega_{j}(0)|0\rangle$

$$
M\left(t, t_{0}\right) w_{\nu}=\mathrm{e}^{-E_{\nu}\left(t-t_{0}\right)} w_{\nu}
$$

We extract ground and first excited states energy from eigenvalues of matrix $M\left(t, t_{0}\right)$

$$
M\left(t, t_{0}\right)=G^{-1 / 2}\left(t_{0}\right) G(t) G^{-1 / 2}\left(t_{0}\right), t_{0}: \text { reference point }
$$

Scalar QED

Important assumption of finite volume method Short range interaction $V(r)=\mathcal{O}\left(\mathrm{e}^{-r}\right) \approx 0$ in $r>R, R<L / 2$

Scalar QED (Abelian-Higgs) with $\left|\Phi_{x}\right|=1$

$$
S=-\beta \sum \operatorname{Re}\left(U_{x, \mu \nu}\right)-h \sum \operatorname{Re}\left(\Phi_{x}^{*} U_{x, \mu} \Phi_{x+\mu}\right)
$$

In Higgs phase

- Coulomb potential is screened

$$
V(r)=\frac{g^{2}}{4 \pi} \frac{\mathrm{e}^{-M_{A} r}}{r}, \quad M_{A}=\sqrt{h / \beta} \quad(\text { Tree level })
$$

- Easy to control bound state formation with charge q Charge of fermions are controlled by $U_{x, \mu}^{q}$

$$
U_{x, \mu}^{q}=\Pi_{i=1}^{q} U_{x, \mu}
$$

in Wilson Dirac operator.

Simulation parameters

- Wilson gauge and Wilson fermion actions
- quenched approximation
- $\beta=2.0$ and $h=0.6$ (Higgs phase)
- charge $q=3$ (scattering) and 4(bound)
- fixed fermion mass $m \approx 0.5$
- fixed temporal size $T=32$
- four spatial volumes

L	16	20	24	28
conf.	640	512	408	312

- Landau gauge fixing
- periodic + anti-periodic boundary for temporal direction

Two-particle operators

$\bar{q}-q$ scattering and bound state(positronium) in ${ }^{1} S_{0}$ (pion) channel Two-particle interaction is attractive.

Diagonalization of 3×3 matrix

$$
\begin{aligned}
\text { point } \Omega_{P} & =\sum_{\vec{x}} \bar{q}(\vec{x}) \gamma_{5} q(\vec{x}) \\
\text { wall } \Omega_{W} & =\sum_{\vec{x}, \vec{y}} \bar{q}(\vec{x}) \gamma_{5} q(\vec{y}) \\
\text { mom } \Omega_{M} & =\sum_{\vec{x}, \vec{y}} \bar{q}(\vec{x}) \gamma_{5} q(\vec{y}) \mathrm{e}^{i \vec{p} \cdot(\vec{x}-\vec{y})} \quad \text { with }|p|=2 \pi / L
\end{aligned}
$$

We expect each operator has better overlap to appropriate states.

$$
\begin{array}{ll}
\Omega_{P} & \text { bound state } \\
\Omega_{W} & n=0 \text { scattering state } \\
\Omega_{M} & n=1 \text { scattering state }
\end{array}
$$

We analyze lowest two energies in both systems.

Results

Method 1. Finite volume effect of ground state

Effective masses for diagonal parts of $G_{i j}$

In $q=3$ case, $W W$ and $M M$ correlators have better overlap to $n=0$ and $n=1$ scattering states, respectively.
In $q=4$ case, $P P$ correlator has clear plateau.

Method 1. (cont'd)

Difference of volume dependence for ground state energy

using $P P$ correlators
$q=3$ case, energy moves toward threshold as volume increases, and can be reasonably fitted by $A+B / L^{3}$. $q=4$ case, very large energy difference is seen which corresponds to large binding energy, and energy is almost constant as function of volume.

Method 2. Anti-periodic boundary

Anti-periodic boundary conditions in three spatial directions Momentum is discretized by odd integer $p_{i}=\pi / L \cdot\left(2 n_{i}+1\right)$

Ground two-particle state has non-zero momentum.

Similar three operators are employed as in periodic case.

$$
\begin{array}{rlr}
\text { point } \Omega_{P} & =\sum_{\vec{x}} \bar{q}(\vec{x}) \gamma_{5} q(\vec{x}) & \\
\operatorname{mom}_{1} \Omega_{M_{1}} & =\sum_{\vec{x}, \vec{y}} \bar{q}(\vec{x}) \gamma_{5} q(\vec{y}) \mathrm{e}^{i \vec{p}_{1} \cdot(\vec{x}-\vec{y})} & \text { with } \vec{p}_{1} L / \pi=(1,1,1) \\
\operatorname{mom}_{3} \Omega_{M_{3}} & =\sum_{\vec{x}, \vec{y}} \bar{q}(\vec{x}) \gamma_{5} q(\vec{y}) \mathrm{e}^{i \vec{p}_{3} \cdot(\vec{x}-\vec{y})} & \text { with } \vec{p}_{3} L / \pi=(3,1,1)
\end{array}
$$

Method 2. (cont'd)

Effective masses of each correlators

$M_{1} M_{1}$ and $P P$ correlators has better overlap in $q=3$ and $q=4$ as expected.
Clear signals of ground state are seen in both $q=3$ and $q=4$ cases.

Method 2. (cont'd)

Comparison of periodic and anti-periodic calculations
Effective masses of ground state with both boundary conditions

While significant difference is seen in $q=3$, effective masses agree with each other.

From results of Method 1. and 2.
$q=3 \rightarrow$ scattering system and $q=4 \rightarrow$ bound system

Method A. Scattering phase shift $\sigma_{0}(\kappa)$

Method A. (cont'd)

Scattering system case
$\begin{aligned} \lim _{\kappa \rightarrow 0} \frac{\tan \sigma_{0}(\kappa)}{\kappa} & =\lim _{k \rightarrow 0} \frac{\tan \delta_{0}(k)}{k} \\ & =a_{0}\end{aligned}$
where $-\kappa^{2}=k^{2}$
Assumption $\kappa \ll 1$

$$
\sigma_{0}(\kappa) \approx \delta_{0}(\kappa)
$$

$\delta_{0}(\kappa)$ is positive, and goes to origin as L increases.
a_{0} is positive in scattering system.

Method A. (cont'd)

Bound system case
$\sigma_{0}(\kappa)$ is close to $-\pi / 4$, and increases with increasing L as expected.

Method A. (cont'd)

Bound system case

$\sigma_{0}(\kappa)$ is close to $-\pi / 4$, and increases with increasing L as expected.

However, $\sigma_{0}(\kappa) \neq-\pi / 4$ even at largest volume.

In bound system

$$
\sigma_{0}(\kappa)=-\pi / 4-\varepsilon, \quad \varepsilon>0 \text { and } \varepsilon \rightarrow 0 \text { as } L \rightarrow \infty
$$

Method A. (summary)

From ground state energy positive a_{0} and $\delta_{0}(k)$ in scattering system negative $\sigma_{0}(\kappa)=-\pi / 4-\varepsilon$ in bound system

$$
\varepsilon>0 \text { and } \varepsilon \rightarrow 0 \text { as } L \rightarrow \infty
$$

Diagonalization in scattering system

Effective masses for diagonal part of $G_{i j}$ and eigenvalues of $M_{i j}$

Energy of $\nu=2$ state has huge error, and $\nu=2$ state is not used in analysis.

Diagonalization in scattering system (cont'd)

Effective masses for diagonal part of $G_{i j}$ and eigenvalues of $M_{i j}$

Diagonalization is not effective for ground state in both L, while it is effective for first excited state in smaller L.

In larger L contamination of other state in $M M$ correlator may decrease, so that diagonalization is less effective.
$I=2 \pi \pi$ scattering calculation, CP-PACS, Phys. Rev. D67(2003) 014502

Diagonalization in bound system

Effective masses for diagonal part of $G_{i j}$ and eigenvalues of $M_{i j}$

Energy of $\nu=2$ state has huge error, and $\nu=2$ state is not used in analysis.

Diagonalization in bound system (cont'd)

Effective masses for diagonal part of $G_{i j}$ and eigenvalues of $M_{i j}$

Diagonalization is not effective in ground state as well as $q=3$ case, while it is effective in first excited state even at largest volume. Error of first excited state is large in both volumes.

Method B. Finite volume effect of first excited state

Difference of volume dependence for first excited state

In scattering system energy converges to $n=1$ noninteracting energy $2 \sqrt{m^{2}+(2 \pi / L)^{2}}$, while in bound system energy seems to converge to threshold.
Energy shift is positive(negative) in bound(scattering) system as expected.

Method B. (cont'd)

Scattering phase shift $\delta_{0}(k)$

$\delta_{0}(k)$ decreases(increases) in bound(scattering) system as k increases. This means
a_{0} is negative in bound system.

Summary of Method A. and B.
scattering system

bound system

Positive a_{0} and δ_{0} in scattering system.
$\sigma_{0}(\kappa)=-\pi / 4-\varepsilon(\varepsilon>0$ and $\varepsilon \rightarrow 0$ as $L \rightarrow \infty)$ from ground state, and negative a_{0} from first excited state in bound system.

We can distinguish bound and scattering systems by investigating scattering phase shift (or volume effect) for ground and first excited states.

Summary

- We investigate property of system including bound state, and try to identify bound system with two methods.
- From ground state energy we find scattering phase shift $\sigma_{0}(\kappa)$ is close to $-\pi / 4$ and increases as volume increases.
- From first excited energy we find energy shift is positive, and scattering length a_{0} is negative.
- These two volume effects are useful to distinguish between bound and scattering system.
- Finite volume effect of first excited state energy seems to be useful in small binding energy case.

Summary (cont'd)

ΔE	scattering	(state)	bound	(state)
ground state	$\Delta E_{0}<0$	$(n=0)$	$\Delta E<0$	(bound)
first excited state	$\Delta E_{1}<0 \quad(n=1)$	$\Delta E_{0}>0$	$(n=0)$	
1st state approach	from below	from above		

We can identify bound system from energy shift of scattering state, i.e., first excited state in system.
Behavior of $q^{2}=(k L / 2 \pi)^{2}$ at large $L(\varepsilon>0)$

q^{2}	scattering	$($ state $)$	bound	(state)
ground state	$0-\varepsilon$	$(n=0)$	$-L^{2}$	(bound)
first excited state	$1-\varepsilon$	$(n=1)$	$0+\varepsilon$	$(n=0)$

Volume dependence of q^{2} is significantly different between two systems.

