Heavy Flavor Physics with 2+1 Flavors of Improved Staggered Quarks

MATTHEW WINGATE

INSTITUTE FOR NUCLEAR THEORY UNIVERSITY OF WASHINGTON

work done with

A. Gray, E. Gulez, J. Shigemitsu (Ohio State) C. T. H. Davies (Glasgow) G. P. Lepage (Cornell) (HPQCD COLLABORATION)

Outline

Search for beyond-the-Standard-Model physics

Lattice QCD input

Relevant new ingredients

Improved staggered fermions

Heavy-light mesons (undoubled heavy + staggered light)

- Results and impact on phenomenology
- Current & future effort; conclusions

Quark flavor

Quark Flavor Mixing

Standard Model (CKM mechanism)

Only weak interactions can change quark flavor

$$\left(\begin{array}{c} u \\ d' \end{array}\right) \left(\begin{array}{c} c \\ s' \end{array}\right) \left(\begin{array}{c} t \\ b' \end{array}\right)$$

$$\begin{pmatrix} d'\\ s'\\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub}\\ V_{cd} & V_{cs} & V_{cb}\\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d\\ s\\ b \end{pmatrix}$$

V is the CKM matrix. Unitarity implies 4 free parameters

Wolfenstein Parameterization

Expansion based on empirical observation

$$\begin{split} |V_{us}| &= 0.22 \ll 1 \\ |V_{cb}| \approx |V_{us}|^2 \\ |V_{ub}| \ll |V_{cb}| \\ \begin{pmatrix} 1 - \lambda^2/2 & \lambda \\ -\lambda & 1 - \lambda^2/2 & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4) \end{split}$$

In practice, go to next order

$$\bar{\rho} = \rho \left(1 - \frac{\lambda^2}{2} \right) \qquad \bar{\eta} = \eta \left(1 - \frac{\lambda^2}{2} \right)$$

Wolfenstein Parameterization

 $\lambda = 0.2205 \pm 0.0018(0.8\%) \qquad A = 0.824 \pm 0.075(9\%)$

 $\bar{\rho} = 0.196 \pm 0.045(23\%)$

 $\bar{\eta} = 0.347 \pm 0.025(7\%)$

Experimental Constraints

 $\bigcirc \ \sin 2eta$ from $B o (J/\psi) K$

\$\varepsilon_K\$ from \$K^0\$ \leftarrow \$\overline{K^0}\$
\$\Delta M\$ from \$B^0\$ \leftarrow \$\overline{B^0}\$
\$V_{ub}\$ and \$V_{cb}\$ from semileptonic decays \$B\$ \rightarrow \$\pi \ell \nu\$ \$B\$ \rightarrow \$D \ellow\$

Meson Decays and Mixings

$$\begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ \pi \to \ell \nu & K \to \ell \nu & B \to \pi \ell \nu \\ * & K \to \pi \ell \nu \\ V_{cd} & V_{cs} & V_{cb} \\ D \to \ell \nu & D_s \to \ell \nu & B \to D \ell \nu \\ D \to \pi \ell \nu & D \to K \ell \nu \\ V_{td} & V_{ts} & V_{tb} \\ B_d \leftrightarrow \overline{B}_d & B_s \leftrightarrow \overline{B}_s & * \end{pmatrix}$$

* most precise determinations for V_{ud} from nuclear beta decays and neutron decay V_{tb} from $t \rightarrow b\ell\nu$

Why flavor physics is interesting

- CKM matrix elements are fundamental parameters of the Standard Model
- The Standard Model is only "natural" up to TeV energies
 - Higgs mediates EWSB at TeV scale, but its mass is fine tuned

$$\delta m^2 ~\sim~ {\Lambda^2 \over 16 \pi^2}$$

- New physics models generically introduce new sources of flavor changing interactions
- Impressive experimental results now! (and they care what we say)

New physics models & quark flavor

Discovery potential of flavor physics experiments **Or** Nondiscovery rules out/tightly constrains these models

Figure from G. Hiller, hep-ph/0207121

Flavor Physics Experiments

CLEO at Cornell **Belle at KEK, Japan Tevatron at Fermilab BaBar at Stanford**

2 recent improvements

Improved staggered quarks

- \mathbf{x} Reduced unacceptable lattice artifacts
- 🙀 Made "unquenching" possible: Light quark masses with moderate lattice spacing

T. Blum, *et al.*, PR D55 (1997) K. Orginos, *et al.*, PR D60 (1999) G.P. Lepage, PR D59, 074502 (1999)

Staggered light quarks + standard heavy quarks

- 🙀 Showed benefits of staggered light quarks applied to heavy-light mesons

 \mathbf{x} Solved problems with extrapolating to physical light quark mass

M.W., et al., PR D67 (2003)

Doublers, a matter of taste

Naive discretization

$${\cal L} \;=\; ar{\psi}(\gamma \cdot
abla + m)\psi$$

$$abla_{\mu}\,\psi(x) \;=\; rac{1}{2}\,rac{1}{u_0}\,[U_{\mu}(x)\psi(x+a\hat{\mu})\;-\;U^{\dagger}_{\mu}(x-a\hat{\mu})\psi(x-a\hat{\mu})]$$

Extra poles in free quark propagator

$$G^{(0)}(p) \ a \ = \ (i\gamma^{\mu}\sin p_{\mu}a + ma)^{-1}$$

Result of a lattice symmetry, e.g.

$$egin{array}{lll} \psi(x) &
ightarrow \, (i\gamma^5\gamma^1) \, e^{\,ix_1\pi/a} \, \psi(x) \ \psi(p) &
ightarrow \, (i\gamma^5\gamma^1) \, \, \psi\left(p+rac{\pi \hat{x}}{a}
ight) \end{array}$$

Let's call extra states tastes

A Smattering of Staggering

Stagger the naive fermions by a spin diagonalization

Resulting action is diagonal in spin

$$ar{\widetilde{\chi}} \left[(\eta \cdot
abla + m) imes oldsymbol{I_4}
ight] \widetilde{\chi}$$
 $\eta^\mu(x) \equiv (-1)^{(x_0+x_1+...+x_{\mu-1})/a}$

Keep only 1 spin component fields $\chi, ar{\chi}$

 $G_{\psi}(y,x) \equiv G_{\chi}(y,x) \otimes \Omega(y) \Omega^{\dagger}(x)$

Hypercube interpretation

 $\epsilon \;=\; (0,0,0,0),\ldots,(a,a,a,a) \quad \Omega(\epsilon) \;\equiv\; \prod_{\mu} \, (\gamma^{\mu})^{\epsilon_{\mu}/a}$

Large discretization errors explained by effective spacing = 2a

Momentum space interpretation

Direction from origin to points in elemental hypercube

 $g \in \{ \emptyset, (0), (1), \dots, (0, 2), \dots, (0, 1, 2, 3) \}$

Associated 4-momenta for the 16 corners of the Brillouin zone

Associated product of Dirac matrices

$$M_g \;=\; \prod_{m{\mu}\,\in\, g} \left(i \gamma_5 \gamma_{m{\mu}}
ight)$$

Interpret naive field in each hexadecant of B.Z. as different taste

$$q^g(k)~=~M_g\psi(k+\pi_g)$$

Improving the staggered action

2 improvements

Improved staggered quarks

- Staggered fermions are computationally cheap
- Remnant chiral symmetry : protects mixing under renormalization and forbids largest lattice artifacts
- Symanzik improvement explains source of large $O(a^2)$ errors and removes them -- decent scaling at $~approx 0.13~{
 m fm}$
- Realistic simulations with 3 flavors of dynamical quarks possible on present resources
- MILC collaboration gauge field configurations : many sea quark masses, 2-3 lattice spacings
- Fourth-root hypothesis has open theoretical questions -- empirical tests

2 improvements

Improved staggered quarks

2 improvements

Staggered quarks in heavy-light mesons M.W. et al., PRD 67, 054505 (2003)

- Contrary to expectations, heavy-light mesons (NRQCD-stagg) much simpler than staggered mesons (stagg-stagg)
- Good properties of staggered quarks still pay off : fewer degrees-offreedom, remnant chiral symmetry
- Best way to push to chiral limit and reduce uncertainty
- Now Fermilab+MILC is joining with FNAL-staggered studies --D meson decays

Heavy-staggered mesons

- High momentum heavy quarks contribute little to corr'n functions
- Compute corr'n f'ns using naive propagator
- Gory detail and quenched tests in M.W., *et al.*, PRD 67, 054505 (2003)

(Axial)Vector Currents

Temporal components

$$\Gamma_{\mu} \equiv \begin{cases} \gamma_{\mu} & \text{for } V_{\mu} \\ \gamma_{\mu}\gamma_{5} & \text{for } A_{\mu} \end{cases}$$

Spatial components

$$\begin{split} J_{0}^{(0)}(x) &= \bar{q}(x) \Gamma_{0} Q(x), \\ J_{0}^{(1)}(x) &= -\frac{1}{2M_{0}} \bar{q}(x) \Gamma_{0} \gamma \cdot \nabla Q(x), \\ J_{0}^{(2)}(x) &= -\frac{1}{2M_{0}} \bar{q}(x) \gamma \cdot \overleftarrow{\nabla} \gamma_{0} \Gamma_{0} Q(x). \\ J_{k}^{(0)}(x) &= \bar{q}(x) \Gamma_{k} Q(x), \\ J_{k}^{(1)}(x) &= -\frac{1}{2M_{0}} \bar{q}(x) \Gamma_{k} \gamma \cdot \nabla Q(x), \\ J_{k}^{(2)}(x) &= -\frac{1}{2M_{0}} \bar{q}(x) \gamma \cdot \overleftarrow{\nabla} \gamma_{0} \Gamma_{k} Q(x), \\ J_{k}^{(3)}(x) &= -\frac{1}{2M_{0}} \bar{q}(x) \nabla_{k} Q(x) \\ J_{k}^{(4)}(x) &= \frac{1}{2M_{0}} \bar{q}(x) \overleftarrow{\nabla}_{k} Q(x), \end{split}$$

Operator Matching

For example,

$$\langle A_0 \rangle_{\text{QCD}} = (1 + \alpha_s \tilde{\rho}_0) \langle J_0^{(0)} \rangle + (1 + \alpha_s \rho_1) \langle J_0^{(1), sub} \rangle + \alpha_s \rho_2 \langle J_0^{(2), sub} \rangle$$

$$J^{(i), sub} = J^{(i)} - \alpha_s \zeta_{10} J^{(0)}$$

Turns out to be leading uncertainty

Perturbative coefficients computed in

E. Gulez, J. Shigemitsu, M.W., PRD 69, 074501 (2004)

Light sea quark effects are important!

C. Davies, et al., PRL 92 (2004)

Logic of 4th Root Hypothesis

Hypothesize that 4th root procedure is QCD in continuum limit

- A testable hypothesis
- Comparable to hypotheses of quark mass extrapolation from outside the chiral regime
- Empirical tests
 - 🛑 So far so good
- Skeptics welcome
 - Also invited to look hard at non-lattice CKM uncertainties
- All approaches should be pushed hard

Some Results

M.W. WITH : C. DAVIES, A. GRAY, E. GULEZ, G.P. LEPAGE, J. SHIGEMITSU

Overview of simulation parameters

- MILC collaboration's 2+1 flavor configurations
- $igodoldsymbol{\circ}$ "coarse" $a=0.13~{
 m fm}$ and "fine" $a=0.09~{
 m fm}$
- $igodoldsymbol{igo$
- \bigcirc Lightest up/down mass $m_s/8$
- We compute at both unquenched and partially quenched masses
- \bigcirc NRQCD action for bottom, correct through $~O(\Lambda^2_{
 m QCD}/m^2_Q)$

Semileptonic Decays

 $\overline{\rho}$

Semileptonic Decays

Fits, fits, fits, and ...

1) Fit 3-point correlators 2) Interpolate to fixed E_{π} 3) Extrapolate in quark mass

$$egin{array}{lll} \langle \pi | V^0 | B
angle &= \sqrt{2 m_B} \, f_{\parallel} \ \langle \pi | V^k | B
angle &= \sqrt{2 m_B} \, p^k_\pi \, f_{\perp} \end{array}$$

Form factor shape

Ball-Zwicky, 4-parameter Becirevic-Kaidalov

Experiment + Lattice QCD

$$rac{1}{|V_{ub}|^2}rac{d\Gamma}{dq^2} \;=\; rac{G_F^2}{24\pi^3}ertec p'ert^3ert f_+(q^2)ert^2$$

$$egin{aligned} |V_{ub}| = \ (4.22 \pm 0.30 \pm 0.51) imes 10^{-4} \ & ext{expt.} \quad ext{LQCD} \end{aligned}$$

E. Gulez, A. Gray, M.W. *et al.*, hep-lat/0601021

$$|V_{td}|^2 \propto [(1-ar{
ho})^2+ar{\eta}^2]$$

$$B^{0} - \overline{B^{0}} \text{ Mixing}$$
Only $B_{d}^{0} - \overline{B_{d}^{0}}$

$$\Delta m_{d} = \frac{G_{F}^{2}}{6\pi^{2}} m_{W}^{2} \eta_{B} S(x_{t}) m_{B_{d}} (f_{B_{d}}^{2} B_{B_{d}}) |V_{td} V_{tb}^{*}|^{2}$$
Including $B_{s}^{0} - \overline{B_{s}^{0}}$

$$\left(\frac{\Delta m_{s}}{\Delta m_{d}} = \frac{m_{B_{s}}}{m_{B_{d}}} \xi^{2} \left| \frac{V_{ts}}{V_{td}} \right|^{2}$$
Most of the mass dependence, $\xi = \frac{f_{B_{s}} \sqrt{B_{B_{s}}}}{f_{B_{d}} \sqrt{B_{B_{d}}}}$

 B_{s} decay constant

 $f_{B_s} = 260 \pm 7 \pm 26 \pm 8 \pm 5 \text{ MeV}$ stat perturb hq discr M.W., et al. PRL 92, 162001 (2004)

$B^0 - \overline{B^0}$ Mixing 2002

Kronfeld & Ryan, (also JLQCD)

$B^0 - \overline{B^0}$ Mixing 2005

A. Gray, M.W. et al (HPQCD) PRL 95, 212001 (2005)

A. Gray, M.W. et al (HPQCD) PRL 95, 212001 (2005)

Improvement in CKM constraints

PRL 95, 212001 (2005)

Plot from A. Hoecker (CKMfitter)

When $B_s^0 - \overline{B_s^0}$ mixing is observed

Plot from A. Hoecker (CKMfitter)

$$2005$$

 $f_{B_d} = (216 \pm 9 \pm 21) \; {
m MeV}$
 $\xi = 1.21 \pm 0.03 \pm 0.01$
 $({
m stat} + \chi) \; ({
m sys})$

A. Gray, M.W. *et al* (HPQCD) PRL 95, 212001 (2005)

Other checks & predictions

 ${\it id} B_c$ meson mass (Fermilab/HPQCD LQCD; CDF expt)

- $\overrightarrow{\mathcal{J}}~D$ meson decay constant (Fermilab/MILC LQCD; CLEO-c expt)
- $\swarrow D
 ightarrow K \ell
 u$ form factor (Fermilab/MILC LQCD; BES, FOCUS expt's)
- QCD coupling and quark masses

Current and future effort

- Complete set of $\Delta B=2$ matrix elements
- Extend perturbative matching to 2 loops (automation)
- Noving NRQCD to work at lower momentum transfer $B o \pi \ell
 u \qquad B o V \gamma$

Closing Remarks

- Recent improvements allow us to get precise results now.
- Heavy meson results are having an impact in flavor physics.
- Hard work ahead to further reduce uncertainties.
- Renormalization factors often leading uncertainty.
- Chiral extrapolation under much better control.