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The problem
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We also perform model-independent one-dimensional (y) fits where the data in every of the
100 q2/m2

π bins were fitted independently. The resulting distribution is shown in Fig.6. The
normalization f+(0) = 1 is assumed. The visible non-linearity can be observed in Fig.7, where
the ratio f+(t)/f+(0)/(1 + λ+q2/m2

π) is presented. The parabolic curve represents the fit with
the quadratic non-linearity in the form-factor.
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Figure 6: The value of f+(t)/f+(0) obtained
in the model-independent fits.
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Figure 7: The value of
f+(t)/f+(0)/(1 + λ+q2/m2

π). The fit with
non-linear contribution is shown.

This non-linearity can not be explained by a possible scalar contribution (that also results
in the enhancement of the number of events at large values of q2). The row 4 of the Table
1 represents a search for the scalar term with the vector form-factor set to be linear. The
resulting value of fS/f+(0) is compatible with zero.

We also perform a model-independent fit to extract simultaneously f+(t) and fS(t). The
resulting distribution for the value fS(t)/f+(0) is shown in Fig.8. The value of the scalar
contribution is compatible with zero with strong enhancement of the errors at small values of
t. This enhancement is explained by the dependence of the scalar contributions (Eq. 2) on the
Dalitz variables. One can observe that the leading term |S|2 is proportional to t and vanishes
at t → 0.

The last row of the Table 1 represents a fit with both scalar contribution and the quadratic
term in the vector form-factor.

We also do not see any tensor contribution in our data (rows 3 and 5 in the Table 1).
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ISTRA

• How much curvature is there in the semileptonic 
form factors?

• How many parameters are necessary to describe the 
data to a given accuracy (say 1%)?

K → π"ν D → π"ν B → π"ν
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El-Khadra et al., Phys. Rev. D64:014502, 2001.

In Fermilab calculation of B→πlν, we 
reported results in the region of recoil 
momentum (or equavalently, q2) where 
we understood our error bars.

We suggested comparing theory and 
experiment only in this region.  

Was this conservatism necessary? 
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FIG. 1. The differential decay rate (without momentum-independent factors) as a function
of p = |pπ|, for (a) B → πlν and (b) D → πlν. The solid error bars show the statistical uncertainty

and the dotted ones show the sum in quadrature of statistical and systematic uncertainties.
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Physical intuition says that 
shapes with wild oscillations 
are implausible.

How can such intuition 
be made quantitative?
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Analyticity and unitarity
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have been used by many authors to investigate 
constraining form factors:

C. Bourrely et al., Nucl. Phys. B189, 157(1981).

C. G. Boyd, B. Grinstein and R. F. Lebed, Phys. Rev. 
Lett. 74, 4603(1995); Nucl. Phys. B461, 493(1996).

M. Fukunaga and T. Onogi, Phys. Rev. D71, 034506(2005). 

L. Lellouch, Nucl. Phys. B479, 353 (1996).

C. G. Boyd and M. J. Savage, Phys. Rev. D56, 303 (1997).

M. C. Arnesen, B. Grinstein, I. Z. Rothstein and I. W. Stewart, Phys. Rev. Lett. 95, 
071802 (2005) [hep-ph/0504209].

...

... and work dating back to early measurements of K→πlν.
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In this talk:
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• Implement the formalism of Arnesen, Grinstein, 
Rothstein, and Stewart.

• Particularly transparent implementation of the effects of unitarity.

• Involves no additional work in fitting beyond that normally done.

• Supplement with results of heavy quark theory, 
following Becher and Hill (Phys. Lett. B633: 61-69, 2006; hep-
ph/0509090).

• Improve the bounds on form factors dramatically, explain the 
smallness of some parameters.
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Outline

• Introduction

• Fermilab/MILC semileptonic review

• Becirevic-Kaidalov function

• Application of Arnesen et al. formalism to 
lattice data

• Becher and Hill results from heavy quark 
physics

7

Thanks Iain Stewart.

Thanks Richard Hill for 
conversations and 
figures.
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CKM physics and the 
Fermilab/MILC heavy-light program

• Because of their importance to 
CKM determinations, semileptonic 
decay amplitudes have attracted 
interest from many approaches:

• Lattice

• Sum Rules

• HQET

• SCET

• ...
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See the review of Masataka Okamoto,
Lattice 2005, hep-lat/0510113.

Important to combine efforts to 
obtain the most powerful 
constraints possible.
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Fermilab/MILC heavy-light program
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Staggered light quarks and Fermilab heavy quarks.
MILC staggered unquenched gauge configurations.

5 lattice spacings.
On each, ms >= ml < ms/8.
On each, 500-600 configurations generated (or to be generated).

a (fm) Status

0.18 Being analyzed

0.15 Ready to be analyzed.

0.125 (coarse) Main published results.

0.09 (fine) Being analyzed

0.06 Being generated

Smallness of the light quark mass allows smaller 
uncertainties from chiral extrapoltaions than before.
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• Configurations generated many places: 
supercomputer centers, QCDOC, ...

• Analysis done (mostly) at Fermilab.

• 2/3 teraflop installed last year.

• 2 teraflops being installed this summer.

Completion of leptonic and 
semileptonic analysis on the 
“fine” (a=0.09 fm) lattices is 
currently consuming the 
bulk of our computer time.
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Semileptonic Decay

I. INTRODUCTION

Processes involving weak decays of B and D mesons are of great interest, because they
yield information on the more poorly known elements of the Cabibbo-Kobayashi-Maskawa
(CKM) matrix. Semileptonic decays have traditionally been used to determine the CKM
matrix, for example, Vud (through nuclear β-decay), Vus (Kl3), Vcb (B → D(∗)lν), and
Vub (b → ulν) [1]. In the first three cases flavor symmetries (isospin, SU(3) flavor, and
heavy quark symmetry, respectively) greatly simplify one’s theoretical understanding of the
hadronic transition matrix elements. In the symmetry limit, and at zero recoil, current con-
servation ensures that the matrix elements are exactly normalized. Even when estimates of
the deviations from the symmetry limit are difficult to calculate reliably, the deviations tend
to be small. Thus, the overall theoretical uncertainty on the decay process is under con-
trol. Given good experimental measurements, this procedure then determines the associated
element of the CKM matrix.

For semileptonic decays of charmed or b-flavored mesons into light mesons there are no
flavor symmetries to constrain the hadronic matrix elements. As a result, the errors on |Vub|
are currently dominated by theoretical uncertainties and are not well known [1]. For the
same reason the best value for |Vcd|, at this time, comes from neutrino production of charm
off of valence d quarks (with the cross section from perturbative QCD), rather than from
the semileptonic D decays. In this paper we take a step towards reducing the theoretical
uncertainty by using lattice QCD to calculate the form factors for the decays B → πlν and
D → πlν. Although our results are in the quenched approximation, we introduce several
methodological improvements that carry over to full QCD. Moreover, this work is the first
to study the lattice-spacing dependence of the form factors.

There is a considerable ongoing experimental effort on this subject, which will lead to
measurements of the differential decay rates. For B → πlν,

dΓ

dp
=

G2
F |Vub|2

24π3

2mBp4|f+(E)|2

E
, (1.1)

where E = pπ · pB/mB is the energy of the pion in the rest frame of the B meson, and

p =
√

E2 − m2
π is the magnitude of the corresponding three-momentum. (pπ and pB are

four-momenta. For D → πlν, replace Vub with Vcd, mB with mD, and pB with pD.) The
non-perturbative form factor f+(E) parametrizes the hadronic matrix element of the heavy-
to-light transition,

〈π(pπ)|Vµ|B(pB)〉 = f+(E)

[

pB + pπ −
m2

B − m2
π

q2
q

]µ

+ f0(E)
m2

B − m2
π

q2
qµ, (1.2)

where Vµ is the charged b → u vector current, and q = pB −pπ is the momentum transferred
to the leptons. For reasons that are made clear below, we prefer to consider the form factors
f+ and f0 as functions of E. This kinematic variable is related to the more common choice
q2 = m2

B + m2
π − 2mBE. The contribution of f0 to the decay rate is suppressed by a factor

(ml/mB)2 so we shall present the rate given in Eq. (1.1). In the decay B → πτν both form
factors are important, however, so both are tabulated below, in Sec. VI.
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One example :

Vcs from semileptonic decay D Kl!
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Bercirevic-Kaidalov parameterization of shape
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f+(q2) = f(0)
(1−q2/m2

D∗
)(1−αq2/m2

D∗
)

f0(q2) = f(0)
(1−q2/m2

D∗
/β)

Properly includes the B* pole

Parameterize other physics 
above the threshold.

Helps simplify chiral extrapolation on the lattice.

We used BK to simplify the analysis.  Amplitudes were 
interpolated to fiducial momentum values using BK.  Then, the 
interpolated amplitudes were extrapolated to the chiral limit.
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Bercirevic-Kaidalov parameterization of shape
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f+(q2) = f(0)
(1−q2/m2

D∗
)(1−αq2/m2

D∗
)

f0(q2) = f(0)
(1−q2/m2

D∗
/β)

BK includes the leading pole properly, but
α and β  are simply parameterizations of higher poles and cuts.

-) Introduces hard to estimate model dependence.
-) Inconsistent with the known high-recoil dependence of the form 
factors?  (Richard Hill.)
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Results
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D ! and D K results (hep-ph/0408306, accepted for PRL)
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Assumes standard 
CKM values.

Focusing on D physics at first 
because of its timeliness with 
the new CLEO results.
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Comparison of form factor shape with previous 
experiment
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D → Klν
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CLEO will measure D meson form factor shapes to 
much higher precision than previously.

16

!"#$%&'( )%*"+,+-.""/"0+1"23+40+5667 87

95 1%/:#%(;:%<*/+=<#+5>?+@(A?

Analysis due “soon”.
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Expected CLEO-c precision
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A good challenge for the lattice.

They currently 
report in terms of 
the BK shape 
parameter α (not 
the best choice).
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Our current understanding of the shape is model dependent.
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D ! and D K results (hep-ph/0408306, accepted for PRL)
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Uncertainty should be larger at
high pion momentum than at low pion momentum.

The BK model 
thinks it 
understands the 
shape.
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Unitarity bounds for form factors

19

Following the discussion of Arnesen et 
al., but the ideas go back to many others.

Kaon semileptonic form factors are very well described by 
a normalization and a slope.  It’s been known for a long 
time that this is implied by unitarity.

What about other meson semileptonic decays.



Paul Mackenzie    4th ILFTN Workshop.  March 8-11, 2006. 20

z maps q2=t>t+ onto |z|=1., and
                  t<t+ onto [-1,1] in the complex plane.

( t  = (pH-pL)2,  t+ = (mH+mL)2, t- = (mH-mL)2).

2

functional forms. The variable

z(t, t0) =

√
t+ − t −

√
t+ − t0√

t+ − t +
√

t+ − t0
, (6)

maps t+ < t < ∞ onto |z| = 1 and −∞ < t < t+ onto z ∈
[−1, 1]. t0 is a free parameter that can be chosen to attain
the tightest possible bounds, and it defines z(t0, t0) = 0.
We take t0 = 0.65 t− giving −0.34 ≤ z ≤ 0.22 for the
B → π range. In Eq. (5) the “Blaschke” factor P (t)
eliminates sub-threshold poles, so P (t) = 1 for f0, while
P (t) = z(t; m2

B∗) for f+ due to the B∗ pole. Finally, the
“outer” function is given by

φ(t, t0)=

√

nI

Kχ(0)
J

(√

t+−t+
√

t+−t0
) (t+−t)(a+1)/4

(t+−t0)1/4

×
(
√

t+−t+
√

t+
)−(b+3)(√

t+−t+
√

t+−t−
)a/2

, (7)

where nI = 3/2 and for f+: (K = 48π, a = 3, b = 2),

while for f0: (K = 16π/(t+t−), a = 1, b = 1). Here χ(0)
J

corresponds to the lowest moment of Π(q2) computed
with an OPE. At two loops in terms of the pole mass
and condensates and taking µ = mb [11, 13]

χ(0)
f+

=
3
[

1+1.140 αs(mb)
]

32π2m2
b

−
mb 〈ūu〉

m6
b

−
〈αsG2〉
12πm6

b

,

χ(0)
f0

=

[

1+0.751 αs(mb)
]

8π2
+

mb 〈ūu〉
m4

b

+
〈αsG2〉
12πm4

b

, (8)

with mb〈ūu〉 * −0.076 GeV4, 〈αsG2〉 * 0.063GeV4. We
use mpole

b = 4.88 GeV as a central value. With Eq. (5)
the dispersive bound gives a constraint on the coefficients

nA
∑

k=0

a2
k ≤ 1 , (9)

for any choice of nA.
Eqs. (5) and (9) give only a weak constraint on the

normalization of the form factor f+. In particular, data
favors a0 ∼ 0.02, so a2

0 , 1. The main power of ana-
lyticity is that if we fix f+(q2) at nA input points then
it constrains the q2 shape between these points. With
nA = 5 the error from the bounds is negligibly small rel-
ative to other uncertainties, as we see below (our analysis

is also insensitive to the exact values of χ(0)
J or mb). The

bounds can be strengthened using heavy quark symme-
try or higher moments of Π(q2) [12], but since this uncer-
tainty is very small we do not use these improvements.

Input Points. A constraint at q2 = 0 is useful in pin-
ning down the form factor in the small q2 region. Here we
implement a constraint at q2 = 0 on |Vub|f+(0) that fol-
lows from a B → ππ factorization theorem derived with
SCET [7]. The result holds in QCD and uses isospin sym-
metry and data to eliminate effects due to the relative
magnitude and strong phase of penguin contributions.

Manipulating formulas in [7] we can write the result in
terms of observables

|Vub|f+(0) =

[

64π

m3
Bf2

π

Br(B− → π0π−)

τB− |Vud|2G2
F

]1/2

(10)

×
[

(C1 + C2)tc − C2

C2
1 − C2

2

][

1 + O
(

αs(mb),
ΛQCD

mb

)

]

,

where C1 = 1.08 and C2 = −0.177 are parameters in the
electroweak Hamiltonian at µ = mb (we drop the tiny
C3,4), and tc is a hadronic parameter whose deviation
from 1 measures the size of color suppressed amplitudes.
In terms of the angles β, γ of the unitarity triangle and
CP-asymmetries Sπ+π− and Cπ+π− in B → π+π−,

tc =

√

Rc
(1+Bπ+π− cos 2β + Sπ+π− sin 2β)

2 sin2γ
, (11)

with Rc =[Br(B0 → π+π−)τB− ]/[2Br(B− → π0π−)τB0 ],
and Bπ+π− = (1− C2

π+π−
−S2

π+π−
)1/2. Eqs. (10,11) im-

prove on relations between B → ππ and B → π(ν̄
derived earlier, such as in Ref. [14], because they do not
rely on expanding in αs(

√
mbΛ) or require the use of

QCD sum rules for input parameters to calculate tc.
Using the latest B → ππ data [1], Eq. (10) gives

f0
in = |Vub|f+(0) = (7.2 ± 1.8) × 10−4 . (12)

This estimate of 25% uncertainty accounts for the 10%
experimental uncertainty, and ∼ 20% theory uncertainty
from perturbative and power corrections. The experi-
mental uncertainty includes γ = 70◦ ± 15◦ which cov-
ers the range from global fits and that preferred by the
SCET based B → ππ method from Ref. [15]. As noted
in [7] the dependence of |Vub|f+(0) on γ is mild for larger
γ’s. Estimates for perturbative and power corrections to
Eq. (10) are each at the ∼ 10% level even when “chirally
enhanced” terms are included [14, 16].

Next we consider lattice QCD input points, fk
in, which

are crucial in fixing the form factor normalization. Tech-
nically, using staggered fermions might add model depen-
dence from the (detM)1/4 trick. We take the remark-
able agreement in [17] as an indication that this model
dependence is small.Using the unquenched MILC config-
urations, Refs [2, 3] find consistent results with different
heavy quark actions. As our default we use the Fermilab
results since they have a point at larger q2:

f1
in = f+(15.87) = 0.799± 0.058 ± 0.088 , (13)

f2
in = f+(18.58) = 1.128± 0.086 ± 0.124 ,

f3
in = f+(24.09) = 3.262± 0.324 ± 0.359 .

The first errors in (13) are statistical, ±σi, and the second
are 11% systematic errors, ±yf i

in, with y = 0.11. For the
lattice error matrix, we use Eij = σ2

i δij + y2f i
inf

j
in, which

takes σi uncorrelated and includes 100% correlation in

Consider a remapping of the semileptonic decay variable t=q2 
into a new variable z in the complex plane:

t0, taken as 0.65 t_ here, is a fudge factor adjusted to center the 
physical region on z~0.  
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F(q2) analytic except when q2=m2 of physical state: 

B π

q
µ

B

π
q

µ

semileptonic region 
(B→π decay)

production region
(Bπ production)

q2 > t+ ≡ (mB + mπ)20 < q2 < t
−

≡ (mB − mπ)2

q
2

t+t
−

0

X     XXXXXXXXXXXXXXX

Analyticity 

21
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X XXXXXX

q2

→

z =

√

1 − q2/t+ −

√

1 − t0/t+
√

1 − q2/t+ +
√

1 − t0/t+

z maps the physical region into a region centered at 0.

z
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What are the physical regions of z for 
the various decays?

23

For the various semileptonic decays, the 
physical region, 0<t<t-, is mapped into

B->π l ν:   -0.34<z<0.22,
D->π l ν :  -0.17<z<0.16,
D->K l ν :  -0.04<z<0.06,
B->D l ν :   -0.02<z<0.04.

When unitarity is taken into account, the smallness of the 
physical range of z will constitute a small parameter that limits 
the number of parameters required to describe the form factors 
to a given accuracy.
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P and φ contain most of the complexity of the form factors. 

.

A power series expansion of the form 
factors in z can be written in the form:

ar
X

iv
:h

ep
-p

h
/0

5
0

4
2
0

9
 v

1
  

 2
5

 A
p

r 
2
0

0
5

A Precision Model Independent Determination of |Vub| from B → πlν
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A precision method for determining |Vub| using the full range in q2 of B → π"ν data is presented.
At large q2 the form factor is taken from unquenched lattice QCD, at q2 = 0 we impose a model
independent constraint obtained from B → ππ using the soft-collinear effective theory, and the shape
is constrained using QCD dispersion relations. We find |Vub| = (3.54 ± 0.17 ± 0.44) × 10−3. With
5% experimental error and 12% theory error, this is competitive with inclusive methods. Theory
error is dominated by the input points, with negligible uncertainty from the dispersion relations.

The remarkable success of the B-factories have lead to
a new era for precision results in the CKM sector of the
standard model. For |Vub| inclusive and exclusive mea-
surements from semileptonic decays should yield a precise
value, but must surmount the now dominant theoreti-
cal uncertainties. For inclusive decays measuring |Vub| is
more difficult than |Vcb| because cuts make observables
either sensitive to a structure function which demands
input from radiative decays, or require neutrino recon-
struction. The heavy flavor averaging group (HFAG)’s
average from inclusive decays based on operator product
expansion techniques is 103|Vub| = 4.7±0.4 [1]. Exclusive
techniques for |Vcb| use heavy quark symmetry (HQS) to
normalize the form factors. For |Vub| from B → π"ν̄ sym-
metry techniques fall flat, and model independent form
factor information relies on precision lattice QCD.

Recently, the Fermilab [2] and HPQCD [3] groups have
presented unquenched lattice results for B → π form
factors. Uncertainties in the discretization restrict the
kinematics to pions that are not too energetic Eπ

<∼
1 GeV, which for the invariant mass of the lepton pair
is 15 GeV2 <∼ q2 ≤ 26.4 GeV2. Unfortunately, since the
phase space goes as |$pπ|3, there are less events and more
experimental uncertainty in this region. For B̄0 → π+"ν̄

dΓ/dq2 = N |Vub|2 |$pπ|3 |f+(q2)|2 , (1)

where N = G2
F /(24π3). For example, Belle [4] found

103 |Vub|q2≥16 =

{

3.87 ± 0.70 ± 0.22+0.85
−0.51 (FNAL)

4.73 ± 0.85 ± 0.27+0.74
−0.50 (HPQCD)

(2)

where the errors are statistical, systematic, and theoret-
ical. In quadrature this is an uncertainty of ∼ 25%.

The latest Babar, CLEO, and Belle average is [5],

Br(B̄0 → π+"−ν̄) = (1.39 ± 0.12)× 10−4 , (3)

which should yield |Vub| at the % 5% level. So far extrac-
tions of |Vub| from the total Br rely on QCD sum rules [6]
and quark models for input. For example, HFAG reports
results on Br(B → {π, ρ, ω}"ν̄) that lead to central values

103|Vub| = 2.9 to 3.9 [1]. Due to the uncertainty they do
not currently average over exclusive extractions of |Vub|.

In this letter we present a model independent exclu-
sive method for determining the entire B → π form fac-
tor f+(q2) and thus |Vub|. A total uncertainty δ|Vub| %
13% is achieved by combining 1) the unquenched lat-
tice results [2, 3], 2) a constraint at q2 = 0 derived
from SCET [7] and B → ππ data, which determines
|Vub|f+(0), and 3) dispersion relations and analyticity
which allow us to interpolate over the entire region
of q2 by bounding the shape of f+(q2) between input
points [8, 9]. The SCET constraint induces an additional
implicit functional dependence on |Vub| in the form fac-
tors. Our first analysis uses just the total Br, yielding an
analytic formula for |Vub|. The second includes q2-spectra
with a χ2 minimization which allows the experimental
data to constrain the theoretical uncertainty. A differ-
ent approach for including the q2-spectra was developed
in [10] based on the Lellouch distribution method [11].

Analyticity Bounds. We briefly review how analytic-
ity constrains the B → π form factors, f+ and f0, re-
ferring to [8, 9, 12] for more detail. Our notation fol-
lows [12], and we set t± = (mB ± mπ)2. Suitable mo-
ments of a time ordered product of currents, Πµν(q2) =
i
∫

d4x eiqx〈0|TJµ(x)J†ν (0)|0〉 can be computed with an
OPE in QCD and are related by a dispersion relation to
a positive definite sum over exclusive states

ImΠµν=

∫

[p.s.] δ(q−pBπ)〈0|J†ν |B̄π〉〈B̄π|Jµ|0〉 + . . . (4)

Keeping this first term bounds a weighted integral over
t+ ≤ t ≤ ∞ of the squared Bπ production form factor.
Using analyticity and crossing symmetry this constrains
the shape in t = q2 of the form factors for B → π in the
physical region 0 ≤ t ≤ t−. The results are simple to
express by writing each of f+(t), f0(t) as a series

f(t) =
1

P (t)φ(t, t0)

∞
∑

k=0

ak(t0) z(t, t0)
k , (5)

with coefficients ak that parameterize different allowed
.
.

Arbitrary function calculated in 
perturbation theory to produce 
a simple form for the ak.Function that has unit norm at z=1., 

and that vanishes at the poles of f, 
e.g., at the B* pole.
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.

A power series expansion of the form 
factors in z can be written in the form:
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A precision method for determining |Vub| using the full range in q2 of B → π"ν data is presented.
At large q2 the form factor is taken from unquenched lattice QCD, at q2 = 0 we impose a model
independent constraint obtained from B → ππ using the soft-collinear effective theory, and the shape
is constrained using QCD dispersion relations. We find |Vub| = (3.54 ± 0.17 ± 0.44) × 10−3. With
5% experimental error and 12% theory error, this is competitive with inclusive methods. Theory
error is dominated by the input points, with negligible uncertainty from the dispersion relations.

The remarkable success of the B-factories have lead to
a new era for precision results in the CKM sector of the
standard model. For |Vub| inclusive and exclusive mea-
surements from semileptonic decays should yield a precise
value, but must surmount the now dominant theoreti-
cal uncertainties. For inclusive decays measuring |Vub| is
more difficult than |Vcb| because cuts make observables
either sensitive to a structure function which demands
input from radiative decays, or require neutrino recon-
struction. The heavy flavor averaging group (HFAG)’s
average from inclusive decays based on operator product
expansion techniques is 103|Vub| = 4.7±0.4 [1]. Exclusive
techniques for |Vcb| use heavy quark symmetry (HQS) to
normalize the form factors. For |Vub| from B → π"ν̄ sym-
metry techniques fall flat, and model independent form
factor information relies on precision lattice QCD.

Recently, the Fermilab [2] and HPQCD [3] groups have
presented unquenched lattice results for B → π form
factors. Uncertainties in the discretization restrict the
kinematics to pions that are not too energetic Eπ

<∼
1 GeV, which for the invariant mass of the lepton pair
is 15 GeV2 <∼ q2 ≤ 26.4 GeV2. Unfortunately, since the
phase space goes as |$pπ|3, there are less events and more
experimental uncertainty in this region. For B̄0 → π+"ν̄

dΓ/dq2 = N |Vub|2 |$pπ|3 |f+(q2)|2 , (1)

where N = G2
F /(24π3). For example, Belle [4] found

103 |Vub|q2≥16 =

{

3.87 ± 0.70 ± 0.22+0.85
−0.51 (FNAL)

4.73 ± 0.85 ± 0.27+0.74
−0.50 (HPQCD)

(2)

where the errors are statistical, systematic, and theoret-
ical. In quadrature this is an uncertainty of ∼ 25%.

The latest Babar, CLEO, and Belle average is [5],

Br(B̄0 → π+"−ν̄) = (1.39 ± 0.12)× 10−4 , (3)

which should yield |Vub| at the % 5% level. So far extrac-
tions of |Vub| from the total Br rely on QCD sum rules [6]
and quark models for input. For example, HFAG reports
results on Br(B → {π, ρ, ω}"ν̄) that lead to central values

103|Vub| = 2.9 to 3.9 [1]. Due to the uncertainty they do
not currently average over exclusive extractions of |Vub|.

In this letter we present a model independent exclu-
sive method for determining the entire B → π form fac-
tor f+(q2) and thus |Vub|. A total uncertainty δ|Vub| %
13% is achieved by combining 1) the unquenched lat-
tice results [2, 3], 2) a constraint at q2 = 0 derived
from SCET [7] and B → ππ data, which determines
|Vub|f+(0), and 3) dispersion relations and analyticity
which allow us to interpolate over the entire region
of q2 by bounding the shape of f+(q2) between input
points [8, 9]. The SCET constraint induces an additional
implicit functional dependence on |Vub| in the form fac-
tors. Our first analysis uses just the total Br, yielding an
analytic formula for |Vub|. The second includes q2-spectra
with a χ2 minimization which allows the experimental
data to constrain the theoretical uncertainty. A differ-
ent approach for including the q2-spectra was developed
in [10] based on the Lellouch distribution method [11].

Analyticity Bounds. We briefly review how analytic-
ity constrains the B → π form factors, f+ and f0, re-
ferring to [8, 9, 12] for more detail. Our notation fol-
lows [12], and we set t± = (mB ± mπ)2. Suitable mo-
ments of a time ordered product of currents, Πµν(q2) =
i
∫

d4x eiqx〈0|TJµ(x)J†ν (0)|0〉 can be computed with an
OPE in QCD and are related by a dispersion relation to
a positive definite sum over exclusive states

ImΠµν=

∫

[p.s.] δ(q−pBπ)〈0|J†ν |B̄π〉〈B̄π|Jµ|0〉 + . . . (4)

Keeping this first term bounds a weighted integral over
t+ ≤ t ≤ ∞ of the squared Bπ production form factor.
Using analyticity and crossing symmetry this constrains
the shape in t = q2 of the form factors for B → π in the
physical region 0 ≤ t ≤ t−. The results are simple to
express by writing each of f+(t), f0(t) as a series

f(t) =
1

P (t)φ(t, t0)

∞
∑

k=0

ak(t0) z(t, t0)
k , (5)

with coefficients ak that parameterize different allowed
.
.

2

functional forms. The variable

z(t, t0) =

√
t+ − t −

√
t+ − t0√

t+ − t +
√

t+ − t0
, (6)

maps t+ < t < ∞ onto |z| = 1 and −∞ < t < t+ onto z ∈
[−1, 1]. t0 is a free parameter that can be chosen to attain
the tightest possible bounds, and it defines z(t0, t0) = 0.
We take t0 = 0.65 t− giving −0.34 ≤ z ≤ 0.22 for the
B → π range. In Eq. (5) the “Blaschke” factor P (t)
eliminates sub-threshold poles, so P (t) = 1 for f0, while
P (t) = z(t; m2

B∗) for f+ due to the B∗ pole. Finally, the
“outer” function is given by

φ(t, t0)=

√

nI

Kχ(0)
J

(√

t+−t+
√

t+−t0
) (t+−t)(a+1)/4

(t+−t0)1/4

×
(
√

t+−t+
√

t+
)−(b+3)(√

t+−t+
√

t+−t−
)a/2

, (7)

where nI = 3/2 and for f+: (K = 48π, a = 3, b = 2),

while for f0: (K = 16π/(t+t−), a = 1, b = 1). Here χ(0)
J

corresponds to the lowest moment of Π(q2) computed
with an OPE. At two loops in terms of the pole mass
and condensates and taking µ = mb [11, 13]

χ(0)
f+

=
3
[

1+1.140 αs(mb)
]

32π2m2
b

−
mb 〈ūu〉

m6
b

−
〈αsG2〉
12πm6

b

,

χ(0)
f0

=

[

1+0.751 αs(mb)
]

8π2
+

mb 〈ūu〉
m4

b

+
〈αsG2〉
12πm4

b

, (8)

with mb〈ūu〉 * −0.076 GeV4, 〈αsG2〉 * 0.063GeV4. We
use mpole

b = 4.88 GeV as a central value. With Eq. (5)
the dispersive bound gives a constraint on the coefficients

nA
∑

k=0

a2
k ≤ 1 , (9)

for any choice of nA.
Eqs. (5) and (9) give only a weak constraint on the

normalization of the form factor f+. In particular, data
favors a0 ∼ 0.02, so a2

0 , 1. The main power of ana-
lyticity is that if we fix f+(q2) at nA input points then
it constrains the q2 shape between these points. With
nA = 5 the error from the bounds is negligibly small rel-
ative to other uncertainties, as we see below (our analysis

is also insensitive to the exact values of χ(0)
J or mb). The

bounds can be strengthened using heavy quark symme-
try or higher moments of Π(q2) [12], but since this uncer-
tainty is very small we do not use these improvements.

Input Points. A constraint at q2 = 0 is useful in pin-
ning down the form factor in the small q2 region. Here we
implement a constraint at q2 = 0 on |Vub|f+(0) that fol-
lows from a B → ππ factorization theorem derived with
SCET [7]. The result holds in QCD and uses isospin sym-
metry and data to eliminate effects due to the relative
magnitude and strong phase of penguin contributions.

Manipulating formulas in [7] we can write the result in
terms of observables

|Vub|f+(0) =

[

64π

m3
Bf2

π

Br(B− → π0π−)

τB− |Vud|2G2
F

]1/2

(10)

×
[

(C1 + C2)tc − C2

C2
1 − C2

2

][

1 + O
(

αs(mb),
ΛQCD

mb

)

]

,

where C1 = 1.08 and C2 = −0.177 are parameters in the
electroweak Hamiltonian at µ = mb (we drop the tiny
C3,4), and tc is a hadronic parameter whose deviation
from 1 measures the size of color suppressed amplitudes.
In terms of the angles β, γ of the unitarity triangle and
CP-asymmetries Sπ+π− and Cπ+π− in B → π+π−,

tc =

√

Rc
(1+Bπ+π− cos 2β + Sπ+π− sin 2β)

2 sin2γ
, (11)

with Rc =[Br(B0 → π+π−)τB− ]/[2Br(B− → π0π−)τB0 ],
and Bπ+π− = (1− C2

π+π−
−S2

π+π−
)1/2. Eqs. (10,11) im-

prove on relations between B → ππ and B → π(ν̄
derived earlier, such as in Ref. [14], because they do not
rely on expanding in αs(

√
mbΛ) or require the use of

QCD sum rules for input parameters to calculate tc.
Using the latest B → ππ data [1], Eq. (10) gives

f0
in = |Vub|f+(0) = (7.2 ± 1.8) × 10−4 . (12)

This estimate of 25% uncertainty accounts for the 10%
experimental uncertainty, and ∼ 20% theory uncertainty
from perturbative and power corrections. The experi-
mental uncertainty includes γ = 70◦ ± 15◦ which cov-
ers the range from global fits and that preferred by the
SCET based B → ππ method from Ref. [15]. As noted
in [7] the dependence of |Vub|f+(0) on γ is mild for larger
γ’s. Estimates for perturbative and power corrections to
Eq. (10) are each at the ∼ 10% level even when “chirally
enhanced” terms are included [14, 16].

Next we consider lattice QCD input points, fk
in, which

are crucial in fixing the form factor normalization. Tech-
nically, using staggered fermions might add model depen-
dence from the (detM)1/4 trick. We take the remark-
able agreement in [17] as an indication that this model
dependence is small.Using the unquenched MILC config-
urations, Refs [2, 3] find consistent results with different
heavy quark actions. As our default we use the Fermilab
results since they have a point at larger q2:

f1
in = f+(15.87) = 0.799± 0.058 ± 0.088 , (13)

f2
in = f+(18.58) = 1.128± 0.086 ± 0.124 ,

f3
in = f+(24.09) = 3.262± 0.324 ± 0.359 .

The first errors in (13) are statistical, ±σi, and the second
are 11% systematic errors, ±yf i

in, with y = 0.11. For the
lattice error matrix, we use Eij = σ2

i δij + y2f i
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in, which

takes σi uncorrelated and includes 100% correlation in
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with mb〈ūu〉 * −0.076 GeV4, 〈αsG2〉 * 0.063GeV4. We
use mpole

b = 4.88 GeV as a central value. With Eq. (5)
the dispersive bound gives a constraint on the coefficients
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for any choice of nA.
Eqs. (5) and (9) give only a weak constraint on the

normalization of the form factor f+. In particular, data
favors a0 ∼ 0.02, so a2

0 , 1. The main power of ana-
lyticity is that if we fix f+(q2) at nA input points then
it constrains the q2 shape between these points. With
nA = 5 the error from the bounds is negligibly small rel-
ative to other uncertainties, as we see below (our analysis

is also insensitive to the exact values of χ(0)
J or mb). The

bounds can be strengthened using heavy quark symme-
try or higher moments of Π(q2) [12], but since this uncer-
tainty is very small we do not use these improvements.

Input Points. A constraint at q2 = 0 is useful in pin-
ning down the form factor in the small q2 region. Here we
implement a constraint at q2 = 0 on |Vub|f+(0) that fol-
lows from a B → ππ factorization theorem derived with
SCET [7]. The result holds in QCD and uses isospin sym-
metry and data to eliminate effects due to the relative
magnitude and strong phase of penguin contributions.

Manipulating formulas in [7] we can write the result in
terms of observables

|Vub|f+(0) =

[

64π

m3
Bf2

π

Br(B− → π0π−)

τB− |Vud|2G2
F

]1/2

(10)

×
[

(C1 + C2)tc − C2

C2
1 − C2

2

][

1 + O
(

αs(mb),
ΛQCD

mb

)

]

,

where C1 = 1.08 and C2 = −0.177 are parameters in the
electroweak Hamiltonian at µ = mb (we drop the tiny
C3,4), and tc is a hadronic parameter whose deviation
from 1 measures the size of color suppressed amplitudes.
In terms of the angles β, γ of the unitarity triangle and
CP-asymmetries Sπ+π− and Cπ+π− in B → π+π−,

tc =

√

Rc
(1+Bπ+π− cos 2β + Sπ+π− sin 2β)

2 sin2γ
, (11)

with Rc =[Br(B0 → π+π−)τB− ]/[2Br(B− → π0π−)τB0 ],
and Bπ+π− = (1− C2

π+π−
−S2

π+π−
)1/2. Eqs. (10,11) im-

prove on relations between B → ππ and B → π(ν̄
derived earlier, such as in Ref. [14], because they do not
rely on expanding in αs(

√
mbΛ) or require the use of

QCD sum rules for input parameters to calculate tc.
Using the latest B → ππ data [1], Eq. (10) gives

f0
in = |Vub|f+(0) = (7.2 ± 1.8) × 10−4 . (12)

This estimate of 25% uncertainty accounts for the 10%
experimental uncertainty, and ∼ 20% theory uncertainty
from perturbative and power corrections. The experi-
mental uncertainty includes γ = 70◦ ± 15◦ which cov-
ers the range from global fits and that preferred by the
SCET based B → ππ method from Ref. [15]. As noted
in [7] the dependence of |Vub|f+(0) on γ is mild for larger
γ’s. Estimates for perturbative and power corrections to
Eq. (10) are each at the ∼ 10% level even when “chirally
enhanced” terms are included [14, 16].

Next we consider lattice QCD input points, fk
in, which

are crucial in fixing the form factor normalization. Tech-
nically, using staggered fermions might add model depen-
dence from the (detM)1/4 trick. We take the remark-
able agreement in [17] as an indication that this model
dependence is small.Using the unquenched MILC config-
urations, Refs [2, 3] find consistent results with different
heavy quark actions. As our default we use the Fermilab
results since they have a point at larger q2:

f1
in = f+(15.87) = 0.799± 0.058 ± 0.088 , (13)

f2
in = f+(18.58) = 1.128± 0.086 ± 0.124 ,

f3
in = f+(24.09) = 3.262± 0.324 ± 0.359 .

The first errors in (13) are statistical, ±σi, and the second
are 11% systematic errors, ±yf i

in, with y = 0.11. For the
lattice error matrix, we use Eij = σ2

i δij + y2f i
inf

j
in, which

takes σi uncorrelated and includes 100% correlation in

2

functional forms. The variable

z(t, t0) =

√
t+ − t −

√
t+ − t0√

t+ − t +
√

t+ − t0
, (6)

maps t+ < t < ∞ onto |z| = 1 and −∞ < t < t+ onto z ∈
[−1, 1]. t0 is a free parameter that can be chosen to attain
the tightest possible bounds, and it defines z(t0, t0) = 0.
We take t0 = 0.65 t− giving −0.34 ≤ z ≤ 0.22 for the
B → π range. In Eq. (5) the “Blaschke” factor P (t)
eliminates sub-threshold poles, so P (t) = 1 for f0, while
P (t) = z(t; m2

B∗) for f+ due to the B∗ pole. Finally, the
“outer” function is given by

φ(t, t0)=

√

nI

Kχ(0)
J

(√

t+−t+
√

t+−t0
) (t+−t)(a+1)/4

(t+−t0)1/4

×
(
√

t+−t+
√

t+
)−(b+3)(√

t+−t+
√

t+−t−
)a/2

, (7)

where nI = 3/2 and for f+: (K = 48π, a = 3, b = 2),

while for f0: (K = 16π/(t+t−), a = 1, b = 1). Here χ(0)
J

corresponds to the lowest moment of Π(q2) computed
with an OPE. At two loops in terms of the pole mass
and condensates and taking µ = mb [11, 13]

χ(0)
f+

=
3
[

1+1.140 αs(mb)
]

32π2m2
b

−
mb 〈ūu〉

m6
b

−
〈αsG2〉
12πm6

b

,

χ(0)
f0

=

[

1+0.751 αs(mb)
]

8π2
+

mb 〈ūu〉
m4

b

+
〈αsG2〉
12πm4

b

, (8)

with mb〈ūu〉 * −0.076 GeV4, 〈αsG2〉 * 0.063GeV4. We
use mpole

b = 4.88 GeV as a central value. With Eq. (5)
the dispersive bound gives a constraint on the coefficients

nA
∑

k=0

a2
k ≤ 1 , (9)

for any choice of nA.
Eqs. (5) and (9) give only a weak constraint on the

normalization of the form factor f+. In particular, data
favors a0 ∼ 0.02, so a2

0 , 1. The main power of ana-
lyticity is that if we fix f+(q2) at nA input points then
it constrains the q2 shape between these points. With
nA = 5 the error from the bounds is negligibly small rel-
ative to other uncertainties, as we see below (our analysis

is also insensitive to the exact values of χ(0)
J or mb). The

bounds can be strengthened using heavy quark symme-
try or higher moments of Π(q2) [12], but since this uncer-
tainty is very small we do not use these improvements.

Input Points. A constraint at q2 = 0 is useful in pin-
ning down the form factor in the small q2 region. Here we
implement a constraint at q2 = 0 on |Vub|f+(0) that fol-
lows from a B → ππ factorization theorem derived with
SCET [7]. The result holds in QCD and uses isospin sym-
metry and data to eliminate effects due to the relative
magnitude and strong phase of penguin contributions.

Manipulating formulas in [7] we can write the result in
terms of observables

|Vub|f+(0) =

[

64π

m3
Bf2

π

Br(B− → π0π−)

τB− |Vud|2G2
F

]1/2

(10)

×
[

(C1 + C2)tc − C2

C2
1 − C2

2

][

1 + O
(

αs(mb),
ΛQCD

mb

)

]

,

where C1 = 1.08 and C2 = −0.177 are parameters in the
electroweak Hamiltonian at µ = mb (we drop the tiny
C3,4), and tc is a hadronic parameter whose deviation
from 1 measures the size of color suppressed amplitudes.
In terms of the angles β, γ of the unitarity triangle and
CP-asymmetries Sπ+π− and Cπ+π− in B → π+π−,

tc =

√

Rc
(1+Bπ+π− cos 2β + Sπ+π− sin 2β)

2 sin2γ
, (11)

with Rc =[Br(B0 → π+π−)τB− ]/[2Br(B− → π0π−)τB0 ],
and Bπ+π− = (1− C2

π+π−
−S2

π+π−
)1/2. Eqs. (10,11) im-

prove on relations between B → ππ and B → π(ν̄
derived earlier, such as in Ref. [14], because they do not
rely on expanding in αs(

√
mbΛ) or require the use of

QCD sum rules for input parameters to calculate tc.
Using the latest B → ππ data [1], Eq. (10) gives

f0
in = |Vub|f+(0) = (7.2 ± 1.8) × 10−4 . (12)

This estimate of 25% uncertainty accounts for the 10%
experimental uncertainty, and ∼ 20% theory uncertainty
from perturbative and power corrections. The experi-
mental uncertainty includes γ = 70◦ ± 15◦ which cov-
ers the range from global fits and that preferred by the
SCET based B → ππ method from Ref. [15]. As noted
in [7] the dependence of |Vub|f+(0) on γ is mild for larger
γ’s. Estimates for perturbative and power corrections to
Eq. (10) are each at the ∼ 10% level even when “chirally
enhanced” terms are included [14, 16].

Next we consider lattice QCD input points, fk
in, which

are crucial in fixing the form factor normalization. Tech-
nically, using staggered fermions might add model depen-
dence from the (detM)1/4 trick. We take the remark-
able agreement in [17] as an indication that this model
dependence is small.Using the unquenched MILC config-
urations, Refs [2, 3] find consistent results with different
heavy quark actions. As our default we use the Fermilab
results since they have a point at larger q2:

f1
in = f+(15.87) = 0.799± 0.058 ± 0.088 , (13)

f2
in = f+(18.58) = 1.128± 0.086 ± 0.124 ,

f3
in = f+(24.09) = 3.262± 0.324 ± 0.359 .

The first errors in (13) are statistical, ±σi, and the second
are 11% systematic errors, ±yf i

in, with y = 0.11. For the
lattice error matrix, we use Eij = σ2

i δij + y2f i
inf

j
in, which

takes σi uncorrelated and includes 100% correlation in

nI=1.5, a=3, b=2
K=48π2

(for f+) Builds in effects of B* pole without spoiling 
unitarity constraints.

Obtained from PT 
to give the a’s a 
simple form.
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A Precision Model Independent Determination of |Vub| from B → πlν
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A precision method for determining |Vub| using the full range in q2 of B → π"ν data is presented.
At large q2 the form factor is taken from unquenched lattice QCD, at q2 = 0 we impose a model
independent constraint obtained from B → ππ using the soft-collinear effective theory, and the shape
is constrained using QCD dispersion relations. We find |Vub| = (3.54 ± 0.17 ± 0.44) × 10−3. With
5% experimental error and 12% theory error, this is competitive with inclusive methods. Theory
error is dominated by the input points, with negligible uncertainty from the dispersion relations.

The remarkable success of the B-factories have lead to
a new era for precision results in the CKM sector of the
standard model. For |Vub| inclusive and exclusive mea-
surements from semileptonic decays should yield a precise
value, but must surmount the now dominant theoreti-
cal uncertainties. For inclusive decays measuring |Vub| is
more difficult than |Vcb| because cuts make observables
either sensitive to a structure function which demands
input from radiative decays, or require neutrino recon-
struction. The heavy flavor averaging group (HFAG)’s
average from inclusive decays based on operator product
expansion techniques is 103|Vub| = 4.7±0.4 [1]. Exclusive
techniques for |Vcb| use heavy quark symmetry (HQS) to
normalize the form factors. For |Vub| from B → π"ν̄ sym-
metry techniques fall flat, and model independent form
factor information relies on precision lattice QCD.

Recently, the Fermilab [2] and HPQCD [3] groups have
presented unquenched lattice results for B → π form
factors. Uncertainties in the discretization restrict the
kinematics to pions that are not too energetic Eπ

<∼
1 GeV, which for the invariant mass of the lepton pair
is 15 GeV2 <∼ q2 ≤ 26.4 GeV2. Unfortunately, since the
phase space goes as |$pπ|3, there are less events and more
experimental uncertainty in this region. For B̄0 → π+"ν̄

dΓ/dq2 = N |Vub|2 |$pπ|3 |f+(q2)|2 , (1)

where N = G2
F /(24π3). For example, Belle [4] found

103 |Vub|q2≥16 =

{

3.87 ± 0.70 ± 0.22+0.85
−0.51 (FNAL)

4.73 ± 0.85 ± 0.27+0.74
−0.50 (HPQCD)

(2)

where the errors are statistical, systematic, and theoret-
ical. In quadrature this is an uncertainty of ∼ 25%.

The latest Babar, CLEO, and Belle average is [5],

Br(B̄0 → π+"−ν̄) = (1.39 ± 0.12)× 10−4 , (3)

which should yield |Vub| at the % 5% level. So far extrac-
tions of |Vub| from the total Br rely on QCD sum rules [6]
and quark models for input. For example, HFAG reports
results on Br(B → {π, ρ, ω}"ν̄) that lead to central values

103|Vub| = 2.9 to 3.9 [1]. Due to the uncertainty they do
not currently average over exclusive extractions of |Vub|.

In this letter we present a model independent exclu-
sive method for determining the entire B → π form fac-
tor f+(q2) and thus |Vub|. A total uncertainty δ|Vub| %
13% is achieved by combining 1) the unquenched lat-
tice results [2, 3], 2) a constraint at q2 = 0 derived
from SCET [7] and B → ππ data, which determines
|Vub|f+(0), and 3) dispersion relations and analyticity
which allow us to interpolate over the entire region
of q2 by bounding the shape of f+(q2) between input
points [8, 9]. The SCET constraint induces an additional
implicit functional dependence on |Vub| in the form fac-
tors. Our first analysis uses just the total Br, yielding an
analytic formula for |Vub|. The second includes q2-spectra
with a χ2 minimization which allows the experimental
data to constrain the theoretical uncertainty. A differ-
ent approach for including the q2-spectra was developed
in [10] based on the Lellouch distribution method [11].

Analyticity Bounds. We briefly review how analytic-
ity constrains the B → π form factors, f+ and f0, re-
ferring to [8, 9, 12] for more detail. Our notation fol-
lows [12], and we set t± = (mB ± mπ)2. Suitable mo-
ments of a time ordered product of currents, Πµν(q2) =
i
∫

d4x eiqx〈0|TJµ(x)J†ν (0)|0〉 can be computed with an
OPE in QCD and are related by a dispersion relation to
a positive definite sum over exclusive states

ImΠµν=

∫

[p.s.] δ(q−pBπ)〈0|J†ν |B̄π〉〈B̄π|Jµ|0〉 + . . . (4)

Keeping this first term bounds a weighted integral over
t+ ≤ t ≤ ∞ of the squared Bπ production form factor.
Using analyticity and crossing symmetry this constrains
the shape in t = q2 of the form factors for B → π in the
physical region 0 ≤ t ≤ t−. The results are simple to
express by writing each of f+(t), f0(t) as a series

f(t) =
1

P (t)φ(t, t0)

∞
∑

k=0

ak(t0) z(t, t0)
k , (5)

with coefficients ak that parameterize different allowed

2

functional forms. The variable

z(t, t0) =

√
t+ − t −

√
t+ − t0√

t+ − t +
√

t+ − t0
, (6)

maps t+ < t < ∞ onto |z| = 1 and −∞ < t < t+ onto z ∈
[−1, 1]. t0 is a free parameter that can be chosen to attain
the tightest possible bounds, and it defines z(t0, t0) = 0.
We take t0 = 0.65 t− giving −0.34 ≤ z ≤ 0.22 for the
B → π range. In Eq. (5) the “Blaschke” factor P (t)
eliminates sub-threshold poles, so P (t) = 1 for f0, while
P (t) = z(t; m2

B∗) for f+ due to the B∗ pole. Finally, the
“outer” function is given by

φ(t, t0)=

√

nI

Kχ(0)
J

(√

t+−t+
√

t+−t0
) (t+−t)(a+1)/4

(t+−t0)1/4

×
(
√

t+−t+
√

t+
)−(b+3)(√

t+−t+
√

t+−t−
)a/2

, (7)

where nI = 3/2 and for f+: (K = 48π, a = 3, b = 2),

while for f0: (K = 16π/(t+t−), a = 1, b = 1). Here χ(0)
J

corresponds to the lowest moment of Π(q2) computed
with an OPE. At two loops in terms of the pole mass
and condensates and taking µ = mb [11, 13]

χ(0)
f+

=
3
[

1+1.140 αs(mb)
]

32π2m2
b

−
mb 〈ūu〉

m6
b

−
〈αsG2〉
12πm6

b

,

χ(0)
f0

=

[

1+0.751 αs(mb)
]

8π2
+

mb 〈ūu〉
m4

b

+
〈αsG2〉
12πm4

b

, (8)

with mb〈ūu〉 * −0.076 GeV4, 〈αsG2〉 * 0.063GeV4. We
use mpole

b = 4.88 GeV as a central value. With Eq. (5)
the dispersive bound gives a constraint on the coefficients

nA
∑

k=0

a2
k ≤ 1 , (9)

for any choice of nA.
Eqs. (5) and (9) give only a weak constraint on the

normalization of the form factor f+. In particular, data
favors a0 ∼ 0.02, so a2

0 , 1. The main power of ana-
lyticity is that if we fix f+(q2) at nA input points then
it constrains the q2 shape between these points. With
nA = 5 the error from the bounds is negligibly small rel-
ative to other uncertainties, as we see below (our analysis

is also insensitive to the exact values of χ(0)
J or mb). The

bounds can be strengthened using heavy quark symme-
try or higher moments of Π(q2) [12], but since this uncer-
tainty is very small we do not use these improvements.

Input Points. A constraint at q2 = 0 is useful in pin-
ning down the form factor in the small q2 region. Here we
implement a constraint at q2 = 0 on |Vub|f+(0) that fol-
lows from a B → ππ factorization theorem derived with
SCET [7]. The result holds in QCD and uses isospin sym-
metry and data to eliminate effects due to the relative
magnitude and strong phase of penguin contributions.

Manipulating formulas in [7] we can write the result in
terms of observables

|Vub|f+(0) =

[

64π

m3
Bf2

π

Br(B− → π0π−)

τB− |Vud|2G2
F

]1/2

(10)

×
[

(C1 + C2)tc − C2

C2
1 − C2

2

][

1 + O
(

αs(mb),
ΛQCD

mb

)

]

,

where C1 = 1.08 and C2 = −0.177 are parameters in the
electroweak Hamiltonian at µ = mb (we drop the tiny
C3,4), and tc is a hadronic parameter whose deviation
from 1 measures the size of color suppressed amplitudes.
In terms of the angles β, γ of the unitarity triangle and
CP-asymmetries Sπ+π− and Cπ+π− in B → π+π−,

tc =

√

Rc
(1+Bπ+π− cos 2β + Sπ+π− sin 2β)

2 sin2γ
, (11)

with Rc =[Br(B0 → π+π−)τB− ]/[2Br(B− → π0π−)τB0 ],
and Bπ+π− = (1− C2

π+π−
−S2

π+π−
)1/2. Eqs. (10,11) im-

prove on relations between B → ππ and B → π(ν̄
derived earlier, such as in Ref. [14], because they do not
rely on expanding in αs(

√
mbΛ) or require the use of

QCD sum rules for input parameters to calculate tc.
Using the latest B → ππ data [1], Eq. (10) gives

f0
in = |Vub|f+(0) = (7.2 ± 1.8) × 10−4 . (12)

This estimate of 25% uncertainty accounts for the 10%
experimental uncertainty, and ∼ 20% theory uncertainty
from perturbative and power corrections. The experi-
mental uncertainty includes γ = 70◦ ± 15◦ which cov-
ers the range from global fits and that preferred by the
SCET based B → ππ method from Ref. [15]. As noted
in [7] the dependence of |Vub|f+(0) on γ is mild for larger
γ’s. Estimates for perturbative and power corrections to
Eq. (10) are each at the ∼ 10% level even when “chirally
enhanced” terms are included [14, 16].

Next we consider lattice QCD input points, fk
in, which

are crucial in fixing the form factor normalization. Tech-
nically, using staggered fermions might add model depen-
dence from the (detM)1/4 trick. We take the remark-
able agreement in [17] as an indication that this model
dependence is small.Using the unquenched MILC config-
urations, Refs [2, 3] find consistent results with different
heavy quark actions. As our default we use the Fermilab
results since they have a point at larger q2:

f1
in = f+(15.87) = 0.799± 0.058 ± 0.088 , (13)

f2
in = f+(18.58) = 1.128± 0.086 ± 0.124 ,

f3
in = f+(24.09) = 3.262± 0.324 ± 0.359 .

The first errors in (13) are statistical, ±σi, and the second
are 11% systematic errors, ±yf i

in, with y = 0.11. For the
lattice error matrix, we use Eij = σ2

i δij + y2f i
inf

j
in, which

takes σi uncorrelated and includes 100% correlation in

2

functional forms. The variable

z(t, t0) =

√
t+ − t −

√
t+ − t0√

t+ − t +
√

t+ − t0
, (6)

maps t+ < t < ∞ onto |z| = 1 and −∞ < t < t+ onto z ∈
[−1, 1]. t0 is a free parameter that can be chosen to attain
the tightest possible bounds, and it defines z(t0, t0) = 0.
We take t0 = 0.65 t− giving −0.34 ≤ z ≤ 0.22 for the
B → π range. In Eq. (5) the “Blaschke” factor P (t)
eliminates sub-threshold poles, so P (t) = 1 for f0, while
P (t) = z(t; m2

B∗) for f+ due to the B∗ pole. Finally, the
“outer” function is given by

φ(t, t0)=

√

nI

Kχ(0)
J

(√

t+−t+
√

t+−t0
) (t+−t)(a+1)/4

(t+−t0)1/4

×
(
√

t+−t+
√

t+
)−(b+3)(√

t+−t+
√

t+−t−
)a/2

, (7)

where nI = 3/2 and for f+: (K = 48π, a = 3, b = 2),

while for f0: (K = 16π/(t+t−), a = 1, b = 1). Here χ(0)
J

corresponds to the lowest moment of Π(q2) computed
with an OPE. At two loops in terms of the pole mass
and condensates and taking µ = mb [11, 13]

χ(0)
f+

=
3
[

1+1.140 αs(mb)
]

32π2m2
b

−
mb 〈ūu〉

m6
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−
〈αsG2〉
12πm6

b

,
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=

[

1+0.751 αs(mb)
]

8π2
+

mb 〈ūu〉
m4

b

+
〈αsG2〉
12πm4

b

, (8)

with mb〈ūu〉 * −0.076 GeV4, 〈αsG2〉 * 0.063GeV4. We
use mpole

b = 4.88 GeV as a central value. With Eq. (5)
the dispersive bound gives a constraint on the coefficients

nA
∑

k=0

a2
k ≤ 1 , (9)

for any choice of nA.
Eqs. (5) and (9) give only a weak constraint on the

normalization of the form factor f+. In particular, data
favors a0 ∼ 0.02, so a2

0 , 1. The main power of ana-
lyticity is that if we fix f+(q2) at nA input points then
it constrains the q2 shape between these points. With
nA = 5 the error from the bounds is negligibly small rel-
ative to other uncertainties, as we see below (our analysis

is also insensitive to the exact values of χ(0)
J or mb). The

bounds can be strengthened using heavy quark symme-
try or higher moments of Π(q2) [12], but since this uncer-
tainty is very small we do not use these improvements.

Input Points. A constraint at q2 = 0 is useful in pin-
ning down the form factor in the small q2 region. Here we
implement a constraint at q2 = 0 on |Vub|f+(0) that fol-
lows from a B → ππ factorization theorem derived with
SCET [7]. The result holds in QCD and uses isospin sym-
metry and data to eliminate effects due to the relative
magnitude and strong phase of penguin contributions.

Manipulating formulas in [7] we can write the result in
terms of observables

|Vub|f+(0) =

[

64π

m3
Bf2

π

Br(B− → π0π−)

τB− |Vud|2G2
F

]1/2

(10)

×
[

(C1 + C2)tc − C2

C2
1 − C2

2

][

1 + O
(

αs(mb),
ΛQCD

mb

)

]

,

where C1 = 1.08 and C2 = −0.177 are parameters in the
electroweak Hamiltonian at µ = mb (we drop the tiny
C3,4), and tc is a hadronic parameter whose deviation
from 1 measures the size of color suppressed amplitudes.
In terms of the angles β, γ of the unitarity triangle and
CP-asymmetries Sπ+π− and Cπ+π− in B → π+π−,

tc =

√

Rc
(1+Bπ+π− cos 2β + Sπ+π− sin 2β)

2 sin2γ
, (11)

with Rc =[Br(B0 → π+π−)τB− ]/[2Br(B− → π0π−)τB0 ],
and Bπ+π− = (1− C2

π+π−
−S2

π+π−
)1/2. Eqs. (10,11) im-

prove on relations between B → ππ and B → π(ν̄
derived earlier, such as in Ref. [14], because they do not
rely on expanding in αs(

√
mbΛ) or require the use of

QCD sum rules for input parameters to calculate tc.
Using the latest B → ππ data [1], Eq. (10) gives

f0
in = |Vub|f+(0) = (7.2 ± 1.8) × 10−4 . (12)

This estimate of 25% uncertainty accounts for the 10%
experimental uncertainty, and ∼ 20% theory uncertainty
from perturbative and power corrections. The experi-
mental uncertainty includes γ = 70◦ ± 15◦ which cov-
ers the range from global fits and that preferred by the
SCET based B → ππ method from Ref. [15]. As noted
in [7] the dependence of |Vub|f+(0) on γ is mild for larger
γ’s. Estimates for perturbative and power corrections to
Eq. (10) are each at the ∼ 10% level even when “chirally
enhanced” terms are included [14, 16].

Next we consider lattice QCD input points, fk
in, which

are crucial in fixing the form factor normalization. Tech-
nically, using staggered fermions might add model depen-
dence from the (detM)1/4 trick. We take the remark-
able agreement in [17] as an indication that this model
dependence is small.Using the unquenched MILC config-
urations, Refs [2, 3] find consistent results with different
heavy quark actions. As our default we use the Fermilab
results since they have a point at larger q2:

f1
in = f+(15.87) = 0.799± 0.058 ± 0.088 , (13)

f2
in = f+(18.58) = 1.128± 0.086 ± 0.124 ,

f3
in = f+(24.09) = 3.262± 0.324 ± 0.359 .

The first errors in (13) are statistical, ±σi, and the second
are 11% systematic errors, ±yf i

in, with y = 0.11. For the
lattice error matrix, we use Eij = σ2

i δij + y2f i
inf

j
in, which

takes σi uncorrelated and includes 100% correlation in

2

functional forms. The variable

z(t, t0) =

√
t+ − t −

√
t+ − t0√

t+ − t +
√

t+ − t0
, (6)

maps t+ < t < ∞ onto |z| = 1 and −∞ < t < t+ onto z ∈
[−1, 1]. t0 is a free parameter that can be chosen to attain
the tightest possible bounds, and it defines z(t0, t0) = 0.
We take t0 = 0.65 t− giving −0.34 ≤ z ≤ 0.22 for the
B → π range. In Eq. (5) the “Blaschke” factor P (t)
eliminates sub-threshold poles, so P (t) = 1 for f0, while
P (t) = z(t; m2

B∗) for f+ due to the B∗ pole. Finally, the
“outer” function is given by
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√
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, (7)

where nI = 3/2 and for f+: (K = 48π, a = 3, b = 2),

while for f0: (K = 16π/(t+t−), a = 1, b = 1). Here χ(0)
J

corresponds to the lowest moment of Π(q2) computed
with an OPE. At two loops in terms of the pole mass
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=
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12πm4

b

, (8)

with mb〈ūu〉 * −0.076 GeV4, 〈αsG2〉 * 0.063GeV4. We
use mpole

b = 4.88 GeV as a central value. With Eq. (5)
the dispersive bound gives a constraint on the coefficients

nA
∑

k=0

a2
k ≤ 1 , (9)

for any choice of nA.
Eqs. (5) and (9) give only a weak constraint on the

normalization of the form factor f+. In particular, data
favors a0 ∼ 0.02, so a2

0 , 1. The main power of ana-
lyticity is that if we fix f+(q2) at nA input points then
it constrains the q2 shape between these points. With
nA = 5 the error from the bounds is negligibly small rel-
ative to other uncertainties, as we see below (our analysis

is also insensitive to the exact values of χ(0)
J or mb). The

bounds can be strengthened using heavy quark symme-
try or higher moments of Π(q2) [12], but since this uncer-
tainty is very small we do not use these improvements.

Input Points. A constraint at q2 = 0 is useful in pin-
ning down the form factor in the small q2 region. Here we
implement a constraint at q2 = 0 on |Vub|f+(0) that fol-
lows from a B → ππ factorization theorem derived with
SCET [7]. The result holds in QCD and uses isospin sym-
metry and data to eliminate effects due to the relative
magnitude and strong phase of penguin contributions.

Manipulating formulas in [7] we can write the result in
terms of observables

|Vub|f+(0) =

[

64π

m3
Bf2

π

Br(B− → π0π−)

τB− |Vud|2G2
F

]1/2

(10)

×
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(C1 + C2)tc − C2
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2

][

1 + O
(
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ΛQCD
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)

]

,

where C1 = 1.08 and C2 = −0.177 are parameters in the
electroweak Hamiltonian at µ = mb (we drop the tiny
C3,4), and tc is a hadronic parameter whose deviation
from 1 measures the size of color suppressed amplitudes.
In terms of the angles β, γ of the unitarity triangle and
CP-asymmetries Sπ+π− and Cπ+π− in B → π+π−,

tc =

√

Rc
(1+Bπ+π− cos 2β + Sπ+π− sin 2β)

2 sin2γ
, (11)

with Rc =[Br(B0 → π+π−)τB− ]/[2Br(B− → π0π−)τB0 ],
and Bπ+π− = (1− C2

π+π−
−S2

π+π−
)1/2. Eqs. (10,11) im-

prove on relations between B → ππ and B → π(ν̄
derived earlier, such as in Ref. [14], because they do not
rely on expanding in αs(

√
mbΛ) or require the use of

QCD sum rules for input parameters to calculate tc.
Using the latest B → ππ data [1], Eq. (10) gives

f0
in = |Vub|f+(0) = (7.2 ± 1.8) × 10−4 . (12)

This estimate of 25% uncertainty accounts for the 10%
experimental uncertainty, and ∼ 20% theory uncertainty
from perturbative and power corrections. The experi-
mental uncertainty includes γ = 70◦ ± 15◦ which cov-
ers the range from global fits and that preferred by the
SCET based B → ππ method from Ref. [15]. As noted
in [7] the dependence of |Vub|f+(0) on γ is mild for larger
γ’s. Estimates for perturbative and power corrections to
Eq. (10) are each at the ∼ 10% level even when “chirally
enhanced” terms are included [14, 16].

Next we consider lattice QCD input points, fk
in, which

are crucial in fixing the form factor normalization. Tech-
nically, using staggered fermions might add model depen-
dence from the (detM)1/4 trick. We take the remark-
able agreement in [17] as an indication that this model
dependence is small.Using the unquenched MILC config-
urations, Refs [2, 3] find consistent results with different
heavy quark actions. As our default we use the Fermilab
results since they have a point at larger q2:

f1
in = f+(15.87) = 0.799± 0.058 ± 0.088 , (13)

f2
in = f+(18.58) = 1.128± 0.086 ± 0.124 ,

f3
in = f+(24.09) = 3.262± 0.324 ± 0.359 .

The first errors in (13) are statistical, ±σi, and the second
are 11% systematic errors, ±yf i

in, with y = 0.11. For the
lattice error matrix, we use Eij = σ2

i δij + y2f i
inf

j
in, which

takes σi uncorrelated and includes 100% correlation in
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[−1, 1]. t0 is a free parameter that can be chosen to attain
the tightest possible bounds, and it defines z(t0, t0) = 0.
We take t0 = 0.65 t− giving −0.34 ≤ z ≤ 0.22 for the
B → π range. In Eq. (5) the “Blaschke” factor P (t)
eliminates sub-threshold poles, so P (t) = 1 for f0, while
P (t) = z(t; m2

B∗) for f+ due to the B∗ pole. Finally, the
“outer” function is given by
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, (7)

where nI = 3/2 and for f+: (K = 48π, a = 3, b = 2),

while for f0: (K = 16π/(t+t−), a = 1, b = 1). Here χ(0)
J

corresponds to the lowest moment of Π(q2) computed
with an OPE. At two loops in terms of the pole mass
and condensates and taking µ = mb [11, 13]
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3
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]
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−
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−
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=
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]
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+
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12πm4
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, (8)

with mb〈ūu〉 * −0.076 GeV4, 〈αsG2〉 * 0.063GeV4. We
use mpole

b = 4.88 GeV as a central value. With Eq. (5)
the dispersive bound gives a constraint on the coefficients

nA
∑

k=0

a2
k ≤ 1 , (9)

for any choice of nA.
Eqs. (5) and (9) give only a weak constraint on the

normalization of the form factor f+. In particular, data
favors a0 ∼ 0.02, so a2

0 , 1. The main power of ana-
lyticity is that if we fix f+(q2) at nA input points then
it constrains the q2 shape between these points. With
nA = 5 the error from the bounds is negligibly small rel-
ative to other uncertainties, as we see below (our analysis

is also insensitive to the exact values of χ(0)
J or mb). The

bounds can be strengthened using heavy quark symme-
try or higher moments of Π(q2) [12], but since this uncer-
tainty is very small we do not use these improvements.

Input Points. A constraint at q2 = 0 is useful in pin-
ning down the form factor in the small q2 region. Here we
implement a constraint at q2 = 0 on |Vub|f+(0) that fol-
lows from a B → ππ factorization theorem derived with
SCET [7]. The result holds in QCD and uses isospin sym-
metry and data to eliminate effects due to the relative
magnitude and strong phase of penguin contributions.

Manipulating formulas in [7] we can write the result in
terms of observables

|Vub|f+(0) =

[

64π

m3
Bf2

π

Br(B− → π0π−)

τB− |Vud|2G2
F

]1/2

(10)

×
[

(C1 + C2)tc − C2
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]

,

where C1 = 1.08 and C2 = −0.177 are parameters in the
electroweak Hamiltonian at µ = mb (we drop the tiny
C3,4), and tc is a hadronic parameter whose deviation
from 1 measures the size of color suppressed amplitudes.
In terms of the angles β, γ of the unitarity triangle and
CP-asymmetries Sπ+π− and Cπ+π− in B → π+π−,

tc =

√

Rc
(1+Bπ+π− cos 2β + Sπ+π− sin 2β)

2 sin2γ
, (11)

with Rc =[Br(B0 → π+π−)τB− ]/[2Br(B− → π0π−)τB0 ],
and Bπ+π− = (1− C2

π+π−
−S2

π+π−
)1/2. Eqs. (10,11) im-

prove on relations between B → ππ and B → π(ν̄
derived earlier, such as in Ref. [14], because they do not
rely on expanding in αs(

√
mbΛ) or require the use of

QCD sum rules for input parameters to calculate tc.
Using the latest B → ππ data [1], Eq. (10) gives

f0
in = |Vub|f+(0) = (7.2 ± 1.8) × 10−4 . (12)

This estimate of 25% uncertainty accounts for the 10%
experimental uncertainty, and ∼ 20% theory uncertainty
from perturbative and power corrections. The experi-
mental uncertainty includes γ = 70◦ ± 15◦ which cov-
ers the range from global fits and that preferred by the
SCET based B → ππ method from Ref. [15]. As noted
in [7] the dependence of |Vub|f+(0) on γ is mild for larger
γ’s. Estimates for perturbative and power corrections to
Eq. (10) are each at the ∼ 10% level even when “chirally
enhanced” terms are included [14, 16].

Next we consider lattice QCD input points, fk
in, which

are crucial in fixing the form factor normalization. Tech-
nically, using staggered fermions might add model depen-
dence from the (detM)1/4 trick. We take the remark-
able agreement in [17] as an indication that this model
dependence is small.Using the unquenched MILC config-
urations, Refs [2, 3] find consistent results with different
heavy quark actions. As our default we use the Fermilab
results since they have a point at larger q2:

f1
in = f+(15.87) = 0.799± 0.058 ± 0.088 , (13)

f2
in = f+(18.58) = 1.128± 0.086 ± 0.124 ,

f3
in = f+(24.09) = 3.262± 0.324 ± 0.359 .

The first errors in (13) are statistical, ±σi, and the second
are 11% systematic errors, ±yf i

in, with y = 0.11. For the
lattice error matrix, we use Eij = σ2

i δij + y2f i
inf

j
in, which

takes σi uncorrelated and includes 100% correlation in

P and phi contain most of the complexity of the 
form factors.  Unitarity requires simply that

Builds in effects of B* pole without spoiling 
unitarity constraints.

It is simply
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A precision method for determining |Vub| using the full range in q2 of B → π"ν data is presented.
At large q2 the form factor is taken from unquenched lattice QCD, at q2 = 0 we impose a model
independent constraint obtained from B → ππ using the soft-collinear effective theory, and the shape
is constrained using QCD dispersion relations. We find |Vub| = (3.54 ± 0.17 ± 0.44) × 10−3. With
5% experimental error and 12% theory error, this is competitive with inclusive methods. Theory
error is dominated by the input points, with negligible uncertainty from the dispersion relations.

The remarkable success of the B-factories have lead to
a new era for precision results in the CKM sector of the
standard model. For |Vub| inclusive and exclusive mea-
surements from semileptonic decays should yield a precise
value, but must surmount the now dominant theoreti-
cal uncertainties. For inclusive decays measuring |Vub| is
more difficult than |Vcb| because cuts make observables
either sensitive to a structure function which demands
input from radiative decays, or require neutrino recon-
struction. The heavy flavor averaging group (HFAG)’s
average from inclusive decays based on operator product
expansion techniques is 103|Vub| = 4.7±0.4 [1]. Exclusive
techniques for |Vcb| use heavy quark symmetry (HQS) to
normalize the form factors. For |Vub| from B → π"ν̄ sym-
metry techniques fall flat, and model independent form
factor information relies on precision lattice QCD.

Recently, the Fermilab [2] and HPQCD [3] groups have
presented unquenched lattice results for B → π form
factors. Uncertainties in the discretization restrict the
kinematics to pions that are not too energetic Eπ

<∼
1 GeV, which for the invariant mass of the lepton pair
is 15 GeV2 <∼ q2 ≤ 26.4 GeV2. Unfortunately, since the
phase space goes as |$pπ|3, there are less events and more
experimental uncertainty in this region. For B̄0 → π+"ν̄

dΓ/dq2 = N |Vub|2 |$pπ|3 |f+(q2)|2 , (1)

where N = G2
F /(24π3). For example, Belle [4] found

103 |Vub|q2≥16 =

{

3.87 ± 0.70 ± 0.22+0.85
−0.51 (FNAL)

4.73 ± 0.85 ± 0.27+0.74
−0.50 (HPQCD)

(2)

where the errors are statistical, systematic, and theoret-
ical. In quadrature this is an uncertainty of ∼ 25%.

The latest Babar, CLEO, and Belle average is [5],

Br(B̄0 → π+"−ν̄) = (1.39 ± 0.12)× 10−4 , (3)

which should yield |Vub| at the % 5% level. So far extrac-
tions of |Vub| from the total Br rely on QCD sum rules [6]
and quark models for input. For example, HFAG reports
results on Br(B → {π, ρ, ω}"ν̄) that lead to central values

103|Vub| = 2.9 to 3.9 [1]. Due to the uncertainty they do
not currently average over exclusive extractions of |Vub|.

In this letter we present a model independent exclu-
sive method for determining the entire B → π form fac-
tor f+(q2) and thus |Vub|. A total uncertainty δ|Vub| %
13% is achieved by combining 1) the unquenched lat-
tice results [2, 3], 2) a constraint at q2 = 0 derived
from SCET [7] and B → ππ data, which determines
|Vub|f+(0), and 3) dispersion relations and analyticity
which allow us to interpolate over the entire region
of q2 by bounding the shape of f+(q2) between input
points [8, 9]. The SCET constraint induces an additional
implicit functional dependence on |Vub| in the form fac-
tors. Our first analysis uses just the total Br, yielding an
analytic formula for |Vub|. The second includes q2-spectra
with a χ2 minimization which allows the experimental
data to constrain the theoretical uncertainty. A differ-
ent approach for including the q2-spectra was developed
in [10] based on the Lellouch distribution method [11].

Analyticity Bounds. We briefly review how analytic-
ity constrains the B → π form factors, f+ and f0, re-
ferring to [8, 9, 12] for more detail. Our notation fol-
lows [12], and we set t± = (mB ± mπ)2. Suitable mo-
ments of a time ordered product of currents, Πµν(q2) =
i
∫

d4x eiqx〈0|TJµ(x)J†ν (0)|0〉 can be computed with an
OPE in QCD and are related by a dispersion relation to
a positive definite sum over exclusive states

ImΠµν=

∫

[p.s.] δ(q−pBπ)〈0|J†ν |B̄π〉〈B̄π|Jµ|0〉 + . . . (4)

Keeping this first term bounds a weighted integral over
t+ ≤ t ≤ ∞ of the squared Bπ production form factor.
Using analyticity and crossing symmetry this constrains
the shape in t = q2 of the form factors for B → π in the
physical region 0 ≤ t ≤ t−. The results are simple to
express by writing each of f+(t), f0(t) as a series

f(t) =
1

P (t)φ(t, t0)

∞
∑

k=0

ak(t0) z(t, t0)
k , (5)

with coefficients ak that parameterize different allowed

By calculating the current-current correlation function in perturbation 
theory and using the JμBπ amplitude,

with crossing symmetry and analyticity, one obtains a simple 
constraint on the aks in the equation
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A precision method for determining |Vub| using the full range in q2 of B → π"ν data is presented.
At large q2 the form factor is taken from unquenched lattice QCD, at q2 = 0 we impose a model
independent constraint obtained from B → ππ using the soft-collinear effective theory, and the shape
is constrained using QCD dispersion relations. We find |Vub| = (3.54 ± 0.17 ± 0.44) × 10−3. With
5% experimental error and 12% theory error, this is competitive with inclusive methods. Theory
error is dominated by the input points, with negligible uncertainty from the dispersion relations.

The remarkable success of the B-factories have lead to
a new era for precision results in the CKM sector of the
standard model. For |Vub| inclusive and exclusive mea-
surements from semileptonic decays should yield a precise
value, but must surmount the now dominant theoreti-
cal uncertainties. For inclusive decays measuring |Vub| is
more difficult than |Vcb| because cuts make observables
either sensitive to a structure function which demands
input from radiative decays, or require neutrino recon-
struction. The heavy flavor averaging group (HFAG)’s
average from inclusive decays based on operator product
expansion techniques is 103|Vub| = 4.7±0.4 [1]. Exclusive
techniques for |Vcb| use heavy quark symmetry (HQS) to
normalize the form factors. For |Vub| from B → π"ν̄ sym-
metry techniques fall flat, and model independent form
factor information relies on precision lattice QCD.

Recently, the Fermilab [2] and HPQCD [3] groups have
presented unquenched lattice results for B → π form
factors. Uncertainties in the discretization restrict the
kinematics to pions that are not too energetic Eπ

<∼
1 GeV, which for the invariant mass of the lepton pair
is 15 GeV2 <∼ q2 ≤ 26.4 GeV2. Unfortunately, since the
phase space goes as |$pπ|3, there are less events and more
experimental uncertainty in this region. For B̄0 → π+"ν̄

dΓ/dq2 = N |Vub|2 |$pπ|3 |f+(q2)|2 , (1)

where N = G2
F /(24π3). For example, Belle [4] found

103 |Vub|q2≥16 =

{

3.87 ± 0.70 ± 0.22+0.85
−0.51 (FNAL)

4.73 ± 0.85 ± 0.27+0.74
−0.50 (HPQCD)

(2)

where the errors are statistical, systematic, and theoret-
ical. In quadrature this is an uncertainty of ∼ 25%.

The latest Babar, CLEO, and Belle average is [5],

Br(B̄0 → π+"−ν̄) = (1.39 ± 0.12)× 10−4 , (3)

which should yield |Vub| at the % 5% level. So far extrac-
tions of |Vub| from the total Br rely on QCD sum rules [6]
and quark models for input. For example, HFAG reports
results on Br(B → {π, ρ, ω}"ν̄) that lead to central values

103|Vub| = 2.9 to 3.9 [1]. Due to the uncertainty they do
not currently average over exclusive extractions of |Vub|.

In this letter we present a model independent exclu-
sive method for determining the entire B → π form fac-
tor f+(q2) and thus |Vub|. A total uncertainty δ|Vub| %
13% is achieved by combining 1) the unquenched lat-
tice results [2, 3], 2) a constraint at q2 = 0 derived
from SCET [7] and B → ππ data, which determines
|Vub|f+(0), and 3) dispersion relations and analyticity
which allow us to interpolate over the entire region
of q2 by bounding the shape of f+(q2) between input
points [8, 9]. The SCET constraint induces an additional
implicit functional dependence on |Vub| in the form fac-
tors. Our first analysis uses just the total Br, yielding an
analytic formula for |Vub|. The second includes q2-spectra
with a χ2 minimization which allows the experimental
data to constrain the theoretical uncertainty. A differ-
ent approach for including the q2-spectra was developed
in [10] based on the Lellouch distribution method [11].

Analyticity Bounds. We briefly review how analytic-
ity constrains the B → π form factors, f+ and f0, re-
ferring to [8, 9, 12] for more detail. Our notation fol-
lows [12], and we set t± = (mB ± mπ)2. Suitable mo-
ments of a time ordered product of currents, Πµν(q2) =
i
∫

d4x eiqx〈0|TJµ(x)J†ν (0)|0〉 can be computed with an
OPE in QCD and are related by a dispersion relation to
a positive definite sum over exclusive states

ImΠµν=

∫

[p.s.] δ(q−pBπ)〈0|J†ν |B̄π〉〈B̄π|Jµ|0〉 + . . . (4)

Keeping this first term bounds a weighted integral over
t+ ≤ t ≤ ∞ of the squared Bπ production form factor.
Using analyticity and crossing symmetry this constrains
the shape in t = q2 of the form factors for B → π in the
physical region 0 ≤ t ≤ t−. The results are simple to
express by writing each of f+(t), f0(t) as a series

f(t) =
1

P (t)φ(t, t0)

∞
∑

k=0

ak(t0) z(t, t0)
k , (5)

with coefficients ak that parameterize different allowed

Return later to the question of
          < Sum vs.

     << Sum.
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A precision method for determining |Vub| using the full range in q2 of B → π"ν data is presented.
At large q2 the form factor is taken from unquenched lattice QCD, at q2 = 0 we impose a model
independent constraint obtained from B → ππ using the soft-collinear effective theory, and the shape
is constrained using QCD dispersion relations. We find |Vub| = (3.54 ± 0.17 ± 0.44) × 10−3. With
5% experimental error and 12% theory error, this is competitive with inclusive methods. Theory
error is dominated by the input points, with negligible uncertainty from the dispersion relations.

The remarkable success of the B-factories have lead to
a new era for precision results in the CKM sector of the
standard model. For |Vub| inclusive and exclusive mea-
surements from semileptonic decays should yield a precise
value, but must surmount the now dominant theoreti-
cal uncertainties. For inclusive decays measuring |Vub| is
more difficult than |Vcb| because cuts make observables
either sensitive to a structure function which demands
input from radiative decays, or require neutrino recon-
struction. The heavy flavor averaging group (HFAG)’s
average from inclusive decays based on operator product
expansion techniques is 103|Vub| = 4.7±0.4 [1]. Exclusive
techniques for |Vcb| use heavy quark symmetry (HQS) to
normalize the form factors. For |Vub| from B → π"ν̄ sym-
metry techniques fall flat, and model independent form
factor information relies on precision lattice QCD.

Recently, the Fermilab [2] and HPQCD [3] groups have
presented unquenched lattice results for B → π form
factors. Uncertainties in the discretization restrict the
kinematics to pions that are not too energetic Eπ

<∼
1 GeV, which for the invariant mass of the lepton pair
is 15 GeV2 <∼ q2 ≤ 26.4 GeV2. Unfortunately, since the
phase space goes as |$pπ|3, there are less events and more
experimental uncertainty in this region. For B̄0 → π+"ν̄

dΓ/dq2 = N |Vub|2 |$pπ|3 |f+(q2)|2 , (1)

where N = G2
F /(24π3). For example, Belle [4] found

103 |Vub|q2≥16 =

{

3.87 ± 0.70 ± 0.22+0.85
−0.51 (FNAL)

4.73 ± 0.85 ± 0.27+0.74
−0.50 (HPQCD)

(2)

where the errors are statistical, systematic, and theoret-
ical. In quadrature this is an uncertainty of ∼ 25%.

The latest Babar, CLEO, and Belle average is [5],

Br(B̄0 → π+"−ν̄) = (1.39 ± 0.12)× 10−4 , (3)

which should yield |Vub| at the % 5% level. So far extrac-
tions of |Vub| from the total Br rely on QCD sum rules [6]
and quark models for input. For example, HFAG reports
results on Br(B → {π, ρ, ω}"ν̄) that lead to central values

103|Vub| = 2.9 to 3.9 [1]. Due to the uncertainty they do
not currently average over exclusive extractions of |Vub|.

In this letter we present a model independent exclu-
sive method for determining the entire B → π form fac-
tor f+(q2) and thus |Vub|. A total uncertainty δ|Vub| %
13% is achieved by combining 1) the unquenched lat-
tice results [2, 3], 2) a constraint at q2 = 0 derived
from SCET [7] and B → ππ data, which determines
|Vub|f+(0), and 3) dispersion relations and analyticity
which allow us to interpolate over the entire region
of q2 by bounding the shape of f+(q2) between input
points [8, 9]. The SCET constraint induces an additional
implicit functional dependence on |Vub| in the form fac-
tors. Our first analysis uses just the total Br, yielding an
analytic formula for |Vub|. The second includes q2-spectra
with a χ2 minimization which allows the experimental
data to constrain the theoretical uncertainty. A differ-
ent approach for including the q2-spectra was developed
in [10] based on the Lellouch distribution method [11].

Analyticity Bounds. We briefly review how analytic-
ity constrains the B → π form factors, f+ and f0, re-
ferring to [8, 9, 12] for more detail. Our notation fol-
lows [12], and we set t± = (mB ± mπ)2. Suitable mo-
ments of a time ordered product of currents, Πµν(q2) =
i
∫

d4x eiqx〈0|TJµ(x)J†ν (0)|0〉 can be computed with an
OPE in QCD and are related by a dispersion relation to
a positive definite sum over exclusive states

ImΠµν=

∫

[p.s.] δ(q−pBπ)〈0|J†ν |B̄π〉〈B̄π|Jµ|0〉 + . . . (4)

Keeping this first term bounds a weighted integral over
t+ ≤ t ≤ ∞ of the squared Bπ production form factor.
Using analyticity and crossing symmetry this constrains
the shape in t = q2 of the form factors for B → π in the
physical region 0 ≤ t ≤ t−. The results are simple to
express by writing each of f+(t), f0(t) as a series

f(t) =
1

P (t)φ(t, t0)

∞
∑

k=0

ak(t0) z(t, t0)
k , (5)

with coefficients ak that parameterize different allowed
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A precision method for determining |Vub| using the full range in q2 of B → π"ν data is presented.
At large q2 the form factor is taken from unquenched lattice QCD, at q2 = 0 we impose a model
independent constraint obtained from B → ππ using the soft-collinear effective theory, and the shape
is constrained using QCD dispersion relations. We find |Vub| = (3.54 ± 0.17 ± 0.44) × 10−3. With
5% experimental error and 12% theory error, this is competitive with inclusive methods. Theory
error is dominated by the input points, with negligible uncertainty from the dispersion relations.

The remarkable success of the B-factories have lead to
a new era for precision results in the CKM sector of the
standard model. For |Vub| inclusive and exclusive mea-
surements from semileptonic decays should yield a precise
value, but must surmount the now dominant theoreti-
cal uncertainties. For inclusive decays measuring |Vub| is
more difficult than |Vcb| because cuts make observables
either sensitive to a structure function which demands
input from radiative decays, or require neutrino recon-
struction. The heavy flavor averaging group (HFAG)’s
average from inclusive decays based on operator product
expansion techniques is 103|Vub| = 4.7±0.4 [1]. Exclusive
techniques for |Vcb| use heavy quark symmetry (HQS) to
normalize the form factors. For |Vub| from B → π"ν̄ sym-
metry techniques fall flat, and model independent form
factor information relies on precision lattice QCD.

Recently, the Fermilab [2] and HPQCD [3] groups have
presented unquenched lattice results for B → π form
factors. Uncertainties in the discretization restrict the
kinematics to pions that are not too energetic Eπ

<∼
1 GeV, which for the invariant mass of the lepton pair
is 15 GeV2 <∼ q2 ≤ 26.4 GeV2. Unfortunately, since the
phase space goes as |$pπ|3, there are less events and more
experimental uncertainty in this region. For B̄0 → π+"ν̄

dΓ/dq2 = N |Vub|2 |$pπ|3 |f+(q2)|2 , (1)

where N = G2
F /(24π3). For example, Belle [4] found

103 |Vub|q2≥16 =

{

3.87 ± 0.70 ± 0.22+0.85
−0.51 (FNAL)

4.73 ± 0.85 ± 0.27+0.74
−0.50 (HPQCD)

(2)

where the errors are statistical, systematic, and theoret-
ical. In quadrature this is an uncertainty of ∼ 25%.

The latest Babar, CLEO, and Belle average is [5],

Br(B̄0 → π+"−ν̄) = (1.39 ± 0.12)× 10−4 , (3)

which should yield |Vub| at the % 5% level. So far extrac-
tions of |Vub| from the total Br rely on QCD sum rules [6]
and quark models for input. For example, HFAG reports
results on Br(B → {π, ρ, ω}"ν̄) that lead to central values

103|Vub| = 2.9 to 3.9 [1]. Due to the uncertainty they do
not currently average over exclusive extractions of |Vub|.

In this letter we present a model independent exclu-
sive method for determining the entire B → π form fac-
tor f+(q2) and thus |Vub|. A total uncertainty δ|Vub| %
13% is achieved by combining 1) the unquenched lat-
tice results [2, 3], 2) a constraint at q2 = 0 derived
from SCET [7] and B → ππ data, which determines
|Vub|f+(0), and 3) dispersion relations and analyticity
which allow us to interpolate over the entire region
of q2 by bounding the shape of f+(q2) between input
points [8, 9]. The SCET constraint induces an additional
implicit functional dependence on |Vub| in the form fac-
tors. Our first analysis uses just the total Br, yielding an
analytic formula for |Vub|. The second includes q2-spectra
with a χ2 minimization which allows the experimental
data to constrain the theoretical uncertainty. A differ-
ent approach for including the q2-spectra was developed
in [10] based on the Lellouch distribution method [11].

Analyticity Bounds. We briefly review how analytic-
ity constrains the B → π form factors, f+ and f0, re-
ferring to [8, 9, 12] for more detail. Our notation fol-
lows [12], and we set t± = (mB ± mπ)2. Suitable mo-
ments of a time ordered product of currents, Πµν(q2) =
i
∫

d4x eiqx〈0|TJµ(x)J†ν (0)|0〉 can be computed with an
OPE in QCD and are related by a dispersion relation to
a positive definite sum over exclusive states

ImΠµν=

∫

[p.s.] δ(q−pBπ)〈0|J†ν |B̄π〉〈B̄π|Jµ|0〉 + . . . (4)

Keeping this first term bounds a weighted integral over
t+ ≤ t ≤ ∞ of the squared Bπ production form factor.
Using analyticity and crossing symmetry this constrains
the shape in t = q2 of the form factors for B → π in the
physical region 0 ≤ t ≤ t−. The results are simple to
express by writing each of f+(t), f0(t) as a series

f(t) =
1

P (t)φ(t, t0)

∞
∑

k=0

ak(t0) z(t, t0)
k , (5)

with coefficients ak that parameterize different allowed
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A precision method for determining |Vub| using the full range in q2 of B → π"ν data is presented.
At large q2 the form factor is taken from unquenched lattice QCD, at q2 = 0 we impose a model
independent constraint obtained from B → ππ using the soft-collinear effective theory, and the shape
is constrained using QCD dispersion relations. We find |Vub| = (3.54 ± 0.17 ± 0.44) × 10−3. With
5% experimental error and 12% theory error, this is competitive with inclusive methods. Theory
error is dominated by the input points, with negligible uncertainty from the dispersion relations.

The remarkable success of the B-factories have lead to
a new era for precision results in the CKM sector of the
standard model. For |Vub| inclusive and exclusive mea-
surements from semileptonic decays should yield a precise
value, but must surmount the now dominant theoreti-
cal uncertainties. For inclusive decays measuring |Vub| is
more difficult than |Vcb| because cuts make observables
either sensitive to a structure function which demands
input from radiative decays, or require neutrino recon-
struction. The heavy flavor averaging group (HFAG)’s
average from inclusive decays based on operator product
expansion techniques is 103|Vub| = 4.7±0.4 [1]. Exclusive
techniques for |Vcb| use heavy quark symmetry (HQS) to
normalize the form factors. For |Vub| from B → π"ν̄ sym-
metry techniques fall flat, and model independent form
factor information relies on precision lattice QCD.

Recently, the Fermilab [2] and HPQCD [3] groups have
presented unquenched lattice results for B → π form
factors. Uncertainties in the discretization restrict the
kinematics to pions that are not too energetic Eπ

<∼
1 GeV, which for the invariant mass of the lepton pair
is 15 GeV2 <∼ q2 ≤ 26.4 GeV2. Unfortunately, since the
phase space goes as |$pπ|3, there are less events and more
experimental uncertainty in this region. For B̄0 → π+"ν̄

dΓ/dq2 = N |Vub|2 |$pπ|3 |f+(q2)|2 , (1)

where N = G2
F /(24π3). For example, Belle [4] found

103 |Vub|q2≥16 =

{

3.87 ± 0.70 ± 0.22+0.85
−0.51 (FNAL)

4.73 ± 0.85 ± 0.27+0.74
−0.50 (HPQCD)

(2)

where the errors are statistical, systematic, and theoret-
ical. In quadrature this is an uncertainty of ∼ 25%.

The latest Babar, CLEO, and Belle average is [5],

Br(B̄0 → π+"−ν̄) = (1.39 ± 0.12)× 10−4 , (3)

which should yield |Vub| at the % 5% level. So far extrac-
tions of |Vub| from the total Br rely on QCD sum rules [6]
and quark models for input. For example, HFAG reports
results on Br(B → {π, ρ, ω}"ν̄) that lead to central values

103|Vub| = 2.9 to 3.9 [1]. Due to the uncertainty they do
not currently average over exclusive extractions of |Vub|.

In this letter we present a model independent exclu-
sive method for determining the entire B → π form fac-
tor f+(q2) and thus |Vub|. A total uncertainty δ|Vub| %
13% is achieved by combining 1) the unquenched lat-
tice results [2, 3], 2) a constraint at q2 = 0 derived
from SCET [7] and B → ππ data, which determines
|Vub|f+(0), and 3) dispersion relations and analyticity
which allow us to interpolate over the entire region
of q2 by bounding the shape of f+(q2) between input
points [8, 9]. The SCET constraint induces an additional
implicit functional dependence on |Vub| in the form fac-
tors. Our first analysis uses just the total Br, yielding an
analytic formula for |Vub|. The second includes q2-spectra
with a χ2 minimization which allows the experimental
data to constrain the theoretical uncertainty. A differ-
ent approach for including the q2-spectra was developed
in [10] based on the Lellouch distribution method [11].

Analyticity Bounds. We briefly review how analytic-
ity constrains the B → π form factors, f+ and f0, re-
ferring to [8, 9, 12] for more detail. Our notation fol-
lows [12], and we set t± = (mB ± mπ)2. Suitable mo-
ments of a time ordered product of currents, Πµν(q2) =
i
∫

d4x eiqx〈0|TJµ(x)J†ν (0)|0〉 can be computed with an
OPE in QCD and are related by a dispersion relation to
a positive definite sum over exclusive states

ImΠµν=

∫

[p.s.] δ(q−pBπ)〈0|J†ν |B̄π〉〈B̄π|Jµ|0〉 + . . . (4)

Keeping this first term bounds a weighted integral over
t+ ≤ t ≤ ∞ of the squared Bπ production form factor.
Using analyticity and crossing symmetry this constrains
the shape in t = q2 of the form factors for B → π in the
physical region 0 ≤ t ≤ t−. The results are simple to
express by writing each of f+(t), f0(t) as a series

f(t) =
1

P (t)φ(t, t0)

∞
∑

k=0

ak(t0) z(t, t0)
k , (5)

with coefficients ak that parameterize different allowed

2

functional forms. The variable

z(t, t0) =

√
t+ − t −

√
t+ − t0√

t+ − t +
√

t+ − t0
, (6)

maps t+ < t < ∞ onto |z| = 1 and −∞ < t < t+ onto z ∈
[−1, 1]. t0 is a free parameter that can be chosen to attain
the tightest possible bounds, and it defines z(t0, t0) = 0.
We take t0 = 0.65 t− giving −0.34 ≤ z ≤ 0.22 for the
B → π range. In Eq. (5) the “Blaschke” factor P (t)
eliminates sub-threshold poles, so P (t) = 1 for f0, while
P (t) = z(t; m2

B∗) for f+ due to the B∗ pole. Finally, the
“outer” function is given by

φ(t, t0)=

√

nI

Kχ(0)
J

(√

t+−t+
√

t+−t0
) (t+−t)(a+1)/4

(t+−t0)1/4

×
(
√

t+−t+
√

t+
)−(b+3)(√

t+−t+
√

t+−t−
)a/2

, (7)

where nI = 3/2 and for f+: (K = 48π, a = 3, b = 2),

while for f0: (K = 16π/(t+t−), a = 1, b = 1). Here χ(0)
J

corresponds to the lowest moment of Π(q2) computed
with an OPE. At two loops in terms of the pole mass
and condensates and taking µ = mb [11, 13]

χ(0)
f+

=
3
[

1+1.140 αs(mb)
]

32π2m2
b

−
mb 〈ūu〉

m6
b

−
〈αsG2〉
12πm6

b

,

χ(0)
f0

=

[

1+0.751 αs(mb)
]

8π2
+

mb 〈ūu〉
m4

b

+
〈αsG2〉
12πm4

b

, (8)

with mb〈ūu〉 * −0.076 GeV4, 〈αsG2〉 * 0.063GeV4. We
use mpole

b = 4.88 GeV as a central value. With Eq. (5)
the dispersive bound gives a constraint on the coefficients

nA
∑

k=0

a2
k ≤ 1 , (9)

for any choice of nA.
Eqs. (5) and (9) give only a weak constraint on the

normalization of the form factor f+. In particular, data
favors a0 ∼ 0.02, so a2

0 , 1. The main power of ana-
lyticity is that if we fix f+(q2) at nA input points then
it constrains the q2 shape between these points. With
nA = 5 the error from the bounds is negligibly small rel-
ative to other uncertainties, as we see below (our analysis

is also insensitive to the exact values of χ(0)
J or mb). The

bounds can be strengthened using heavy quark symme-
try or higher moments of Π(q2) [12], but since this uncer-
tainty is very small we do not use these improvements.

Input Points. A constraint at q2 = 0 is useful in pin-
ning down the form factor in the small q2 region. Here we
implement a constraint at q2 = 0 on |Vub|f+(0) that fol-
lows from a B → ππ factorization theorem derived with
SCET [7]. The result holds in QCD and uses isospin sym-
metry and data to eliminate effects due to the relative
magnitude and strong phase of penguin contributions.

Manipulating formulas in [7] we can write the result in
terms of observables

|Vub|f+(0) =

[

64π

m3
Bf2

π

Br(B− → π0π−)

τB− |Vud|2G2
F

]1/2

(10)

×
[

(C1 + C2)tc − C2

C2
1 − C2

2

][

1 + O
(

αs(mb),
ΛQCD

mb

)

]

,

where C1 = 1.08 and C2 = −0.177 are parameters in the
electroweak Hamiltonian at µ = mb (we drop the tiny
C3,4), and tc is a hadronic parameter whose deviation
from 1 measures the size of color suppressed amplitudes.
In terms of the angles β, γ of the unitarity triangle and
CP-asymmetries Sπ+π− and Cπ+π− in B → π+π−,

tc =

√

Rc
(1+Bπ+π− cos 2β + Sπ+π− sin 2β)

2 sin2γ
, (11)

with Rc =[Br(B0 → π+π−)τB− ]/[2Br(B− → π0π−)τB0 ],
and Bπ+π− = (1− C2

π+π−
−S2

π+π−
)1/2. Eqs. (10,11) im-

prove on relations between B → ππ and B → π(ν̄
derived earlier, such as in Ref. [14], because they do not
rely on expanding in αs(

√
mbΛ) or require the use of

QCD sum rules for input parameters to calculate tc.
Using the latest B → ππ data [1], Eq. (10) gives

f0
in = |Vub|f+(0) = (7.2 ± 1.8) × 10−4 . (12)

This estimate of 25% uncertainty accounts for the 10%
experimental uncertainty, and ∼ 20% theory uncertainty
from perturbative and power corrections. The experi-
mental uncertainty includes γ = 70◦ ± 15◦ which cov-
ers the range from global fits and that preferred by the
SCET based B → ππ method from Ref. [15]. As noted
in [7] the dependence of |Vub|f+(0) on γ is mild for larger
γ’s. Estimates for perturbative and power corrections to
Eq. (10) are each at the ∼ 10% level even when “chirally
enhanced” terms are included [14, 16].

Next we consider lattice QCD input points, fk
in, which

are crucial in fixing the form factor normalization. Tech-
nically, using staggered fermions might add model depen-
dence from the (detM)1/4 trick. We take the remark-
able agreement in [17] as an indication that this model
dependence is small.Using the unquenched MILC config-
urations, Refs [2, 3] find consistent results with different
heavy quark actions. As our default we use the Fermilab
results since they have a point at larger q2:

f1
in = f+(15.87) = 0.799± 0.058 ± 0.088 , (13)

f2
in = f+(18.58) = 1.128± 0.086 ± 0.124 ,

f3
in = f+(24.09) = 3.262± 0.324 ± 0.359 .

The first errors in (13) are statistical, ±σi, and the second
are 11% systematic errors, ±yf i

in, with y = 0.11. For the
lattice error matrix, we use Eij = σ2

i δij + y2f i
inf

j
in, which

takes σi uncorrelated and includes 100% correlation in

2

functional forms. The variable

z(t, t0) =

√
t+ − t −

√
t+ − t0√

t+ − t +
√

t+ − t0
, (6)

maps t+ < t < ∞ onto |z| = 1 and −∞ < t < t+ onto z ∈
[−1, 1]. t0 is a free parameter that can be chosen to attain
the tightest possible bounds, and it defines z(t0, t0) = 0.
We take t0 = 0.65 t− giving −0.34 ≤ z ≤ 0.22 for the
B → π range. In Eq. (5) the “Blaschke” factor P (t)
eliminates sub-threshold poles, so P (t) = 1 for f0, while
P (t) = z(t; m2

B∗) for f+ due to the B∗ pole. Finally, the
“outer” function is given by

φ(t, t0)=

√

nI

Kχ(0)
J

(√

t+−t+
√

t+−t0
) (t+−t)(a+1)/4

(t+−t0)1/4

×
(
√

t+−t+
√

t+
)−(b+3)(√

t+−t+
√

t+−t−
)a/2

, (7)

where nI = 3/2 and for f+: (K = 48π, a = 3, b = 2),

while for f0: (K = 16π/(t+t−), a = 1, b = 1). Here χ(0)
J

corresponds to the lowest moment of Π(q2) computed
with an OPE. At two loops in terms of the pole mass
and condensates and taking µ = mb [11, 13]

χ(0)
f+

=
3
[

1+1.140 αs(mb)
]

32π2m2
b

−
mb 〈ūu〉

m6
b

−
〈αsG2〉
12πm6

b

,

χ(0)
f0

=

[

1+0.751 αs(mb)
]

8π2
+

mb 〈ūu〉
m4

b

+
〈αsG2〉
12πm4

b

, (8)

with mb〈ūu〉 * −0.076 GeV4, 〈αsG2〉 * 0.063GeV4. We
use mpole

b = 4.88 GeV as a central value. With Eq. (5)
the dispersive bound gives a constraint on the coefficients

nA
∑

k=0

a2
k ≤ 1 , (9)

for any choice of nA.
Eqs. (5) and (9) give only a weak constraint on the

normalization of the form factor f+. In particular, data
favors a0 ∼ 0.02, so a2

0 , 1. The main power of ana-
lyticity is that if we fix f+(q2) at nA input points then
it constrains the q2 shape between these points. With
nA = 5 the error from the bounds is negligibly small rel-
ative to other uncertainties, as we see below (our analysis

is also insensitive to the exact values of χ(0)
J or mb). The

bounds can be strengthened using heavy quark symme-
try or higher moments of Π(q2) [12], but since this uncer-
tainty is very small we do not use these improvements.

Input Points. A constraint at q2 = 0 is useful in pin-
ning down the form factor in the small q2 region. Here we
implement a constraint at q2 = 0 on |Vub|f+(0) that fol-
lows from a B → ππ factorization theorem derived with
SCET [7]. The result holds in QCD and uses isospin sym-
metry and data to eliminate effects due to the relative
magnitude and strong phase of penguin contributions.

Manipulating formulas in [7] we can write the result in
terms of observables

|Vub|f+(0) =

[

64π

m3
Bf2

π

Br(B− → π0π−)

τB− |Vud|2G2
F

]1/2

(10)

×
[

(C1 + C2)tc − C2

C2
1 − C2

2

][

1 + O
(

αs(mb),
ΛQCD

mb

)

]

,

where C1 = 1.08 and C2 = −0.177 are parameters in the
electroweak Hamiltonian at µ = mb (we drop the tiny
C3,4), and tc is a hadronic parameter whose deviation
from 1 measures the size of color suppressed amplitudes.
In terms of the angles β, γ of the unitarity triangle and
CP-asymmetries Sπ+π− and Cπ+π− in B → π+π−,

tc =

√

Rc
(1+Bπ+π− cos 2β + Sπ+π− sin 2β)

2 sin2γ
, (11)

with Rc =[Br(B0 → π+π−)τB− ]/[2Br(B− → π0π−)τB0 ],
and Bπ+π− = (1− C2

π+π−
−S2

π+π−
)1/2. Eqs. (10,11) im-

prove on relations between B → ππ and B → π(ν̄
derived earlier, such as in Ref. [14], because they do not
rely on expanding in αs(

√
mbΛ) or require the use of

QCD sum rules for input parameters to calculate tc.
Using the latest B → ππ data [1], Eq. (10) gives

f0
in = |Vub|f+(0) = (7.2 ± 1.8) × 10−4 . (12)

This estimate of 25% uncertainty accounts for the 10%
experimental uncertainty, and ∼ 20% theory uncertainty
from perturbative and power corrections. The experi-
mental uncertainty includes γ = 70◦ ± 15◦ which cov-
ers the range from global fits and that preferred by the
SCET based B → ππ method from Ref. [15]. As noted
in [7] the dependence of |Vub|f+(0) on γ is mild for larger
γ’s. Estimates for perturbative and power corrections to
Eq. (10) are each at the ∼ 10% level even when “chirally
enhanced” terms are included [14, 16].

Next we consider lattice QCD input points, fk
in, which

are crucial in fixing the form factor normalization. Tech-
nically, using staggered fermions might add model depen-
dence from the (detM)1/4 trick. We take the remark-
able agreement in [17] as an indication that this model
dependence is small.Using the unquenched MILC config-
urations, Refs [2, 3] find consistent results with different
heavy quark actions. As our default we use the Fermilab
results since they have a point at larger q2:

f1
in = f+(15.87) = 0.799± 0.058 ± 0.088 , (13)

f2
in = f+(18.58) = 1.128± 0.086 ± 0.124 ,

f3
in = f+(24.09) = 3.262± 0.324 ± 0.359 .

The first errors in (13) are statistical, ±σi, and the second
are 11% systematic errors, ±yf i

in, with y = 0.11. For the
lattice error matrix, we use Eij = σ2

i δij + y2f i
inf

j
in, which

takes σi uncorrelated and includes 100% correlation in

2

functional forms. The variable

z(t, t0) =

√
t+ − t −

√
t+ − t0√

t+ − t +
√

t+ − t0
, (6)

maps t+ < t < ∞ onto |z| = 1 and −∞ < t < t+ onto z ∈
[−1, 1]. t0 is a free parameter that can be chosen to attain
the tightest possible bounds, and it defines z(t0, t0) = 0.
We take t0 = 0.65 t− giving −0.34 ≤ z ≤ 0.22 for the
B → π range. In Eq. (5) the “Blaschke” factor P (t)
eliminates sub-threshold poles, so P (t) = 1 for f0, while
P (t) = z(t; m2

B∗) for f+ due to the B∗ pole. Finally, the
“outer” function is given by
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√

nI

Kχ(0)
J

(√

t+−t+
√

t+−t0
) (t+−t)(a+1)/4

(t+−t0)1/4

×
(
√

t+−t+
√

t+
)−(b+3)(√

t+−t+
√

t+−t−
)a/2

, (7)

where nI = 3/2 and for f+: (K = 48π, a = 3, b = 2),

while for f0: (K = 16π/(t+t−), a = 1, b = 1). Here χ(0)
J

corresponds to the lowest moment of Π(q2) computed
with an OPE. At two loops in terms of the pole mass
and condensates and taking µ = mb [11, 13]

χ(0)
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3
[
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]
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mb 〈ūu〉

m6
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=

[
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b

+
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12πm4

b

, (8)

with mb〈ūu〉 * −0.076 GeV4, 〈αsG2〉 * 0.063GeV4. We
use mpole

b = 4.88 GeV as a central value. With Eq. (5)
the dispersive bound gives a constraint on the coefficients

nA
∑

k=0

a2
k ≤ 1 , (9)

for any choice of nA.
Eqs. (5) and (9) give only a weak constraint on the

normalization of the form factor f+. In particular, data
favors a0 ∼ 0.02, so a2

0 , 1. The main power of ana-
lyticity is that if we fix f+(q2) at nA input points then
it constrains the q2 shape between these points. With
nA = 5 the error from the bounds is negligibly small rel-
ative to other uncertainties, as we see below (our analysis

is also insensitive to the exact values of χ(0)
J or mb). The

bounds can be strengthened using heavy quark symme-
try or higher moments of Π(q2) [12], but since this uncer-
tainty is very small we do not use these improvements.

Input Points. A constraint at q2 = 0 is useful in pin-
ning down the form factor in the small q2 region. Here we
implement a constraint at q2 = 0 on |Vub|f+(0) that fol-
lows from a B → ππ factorization theorem derived with
SCET [7]. The result holds in QCD and uses isospin sym-
metry and data to eliminate effects due to the relative
magnitude and strong phase of penguin contributions.

Manipulating formulas in [7] we can write the result in
terms of observables

|Vub|f+(0) =

[

64π

m3
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π
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×
[

(C1 + C2)tc − C2

C2
1 − C2

2

][

1 + O
(

αs(mb),
ΛQCD

mb

)

]

,

where C1 = 1.08 and C2 = −0.177 are parameters in the
electroweak Hamiltonian at µ = mb (we drop the tiny
C3,4), and tc is a hadronic parameter whose deviation
from 1 measures the size of color suppressed amplitudes.
In terms of the angles β, γ of the unitarity triangle and
CP-asymmetries Sπ+π− and Cπ+π− in B → π+π−,

tc =

√

Rc
(1+Bπ+π− cos 2β + Sπ+π− sin 2β)

2 sin2γ
, (11)

with Rc =[Br(B0 → π+π−)τB− ]/[2Br(B− → π0π−)τB0 ],
and Bπ+π− = (1− C2

π+π−
−S2

π+π−
)1/2. Eqs. (10,11) im-

prove on relations between B → ππ and B → π(ν̄
derived earlier, such as in Ref. [14], because they do not
rely on expanding in αs(

√
mbΛ) or require the use of

QCD sum rules for input parameters to calculate tc.
Using the latest B → ππ data [1], Eq. (10) gives

f0
in = |Vub|f+(0) = (7.2 ± 1.8) × 10−4 . (12)

This estimate of 25% uncertainty accounts for the 10%
experimental uncertainty, and ∼ 20% theory uncertainty
from perturbative and power corrections. The experi-
mental uncertainty includes γ = 70◦ ± 15◦ which cov-
ers the range from global fits and that preferred by the
SCET based B → ππ method from Ref. [15]. As noted
in [7] the dependence of |Vub|f+(0) on γ is mild for larger
γ’s. Estimates for perturbative and power corrections to
Eq. (10) are each at the ∼ 10% level even when “chirally
enhanced” terms are included [14, 16].

Next we consider lattice QCD input points, fk
in, which

are crucial in fixing the form factor normalization. Tech-
nically, using staggered fermions might add model depen-
dence from the (detM)1/4 trick. We take the remark-
able agreement in [17] as an indication that this model
dependence is small.Using the unquenched MILC config-
urations, Refs [2, 3] find consistent results with different
heavy quark actions. As our default we use the Fermilab
results since they have a point at larger q2:

f1
in = f+(15.87) = 0.799± 0.058 ± 0.088 , (13)

f2
in = f+(18.58) = 1.128± 0.086 ± 0.124 ,

f3
in = f+(24.09) = 3.262± 0.324 ± 0.359 .

The first errors in (13) are statistical, ±σi, and the second
are 11% systematic errors, ±yf i

in, with y = 0.11. For the
lattice error matrix, we use Eij = σ2

i δij + y2f i
inf

j
in, which

takes σi uncorrelated and includes 100% correlation in
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In this parameterization, the form factors have the 
form:
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maps t+ < t < ∞ onto |z| = 1 and −∞ < t < t+ onto z ∈
[−1, 1]. t0 is a free parameter that can be chosen to attain
the tightest possible bounds, and it defines z(t0, t0) = 0.
We take t0 = 0.65 t− giving −0.34 ≤ z ≤ 0.22 for the
B → π range. In Eq. (5) the “Blaschke” factor P (t)
eliminates sub-threshold poles, so P (t) = 1 for f0, while
P (t) = z(t; m2

B∗) for f+ due to the B∗ pole. Finally, the
“outer” function is given by
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where nI = 3/2 and for f+: (K = 48π, a = 3, b = 2),

while for f0: (K = 16π/(t+t−), a = 1, b = 1). Here χ(0)
J

corresponds to the lowest moment of Π(q2) computed
with an OPE. At two loops in terms of the pole mass
and condensates and taking µ = mb [11, 13]
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]
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]
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12πm4
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, (8)

with mb〈ūu〉 * −0.076 GeV4, 〈αsG2〉 * 0.063GeV4. We
use mpole

b = 4.88 GeV as a central value. With Eq. (5)
the dispersive bound gives a constraint on the coefficients

nA
∑

k=0

a2
k ≤ 1 , (9)

for any choice of nA.
Eqs. (5) and (9) give only a weak constraint on the

normalization of the form factor f+. In particular, data
favors a0 ∼ 0.02, so a2

0 , 1. The main power of ana-
lyticity is that if we fix f+(q2) at nA input points then
it constrains the q2 shape between these points. With
nA = 5 the error from the bounds is negligibly small rel-
ative to other uncertainties, as we see below (our analysis

is also insensitive to the exact values of χ(0)
J or mb). The

bounds can be strengthened using heavy quark symme-
try or higher moments of Π(q2) [12], but since this uncer-
tainty is very small we do not use these improvements.

Input Points. A constraint at q2 = 0 is useful in pin-
ning down the form factor in the small q2 region. Here we
implement a constraint at q2 = 0 on |Vub|f+(0) that fol-
lows from a B → ππ factorization theorem derived with
SCET [7]. The result holds in QCD and uses isospin sym-
metry and data to eliminate effects due to the relative
magnitude and strong phase of penguin contributions.

Manipulating formulas in [7] we can write the result in
terms of observables

|Vub|f+(0) =

[

64π

m3
Bf2

π

Br(B− → π0π−)

τB− |Vud|2G2
F

]1/2

(10)

×
[
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,

where C1 = 1.08 and C2 = −0.177 are parameters in the
electroweak Hamiltonian at µ = mb (we drop the tiny
C3,4), and tc is a hadronic parameter whose deviation
from 1 measures the size of color suppressed amplitudes.
In terms of the angles β, γ of the unitarity triangle and
CP-asymmetries Sπ+π− and Cπ+π− in B → π+π−,

tc =

√

Rc
(1+Bπ+π− cos 2β + Sπ+π− sin 2β)

2 sin2γ
, (11)

with Rc =[Br(B0 → π+π−)τB− ]/[2Br(B− → π0π−)τB0 ],
and Bπ+π− = (1− C2

π+π−
−S2

π+π−
)1/2. Eqs. (10,11) im-

prove on relations between B → ππ and B → π(ν̄
derived earlier, such as in Ref. [14], because they do not
rely on expanding in αs(

√
mbΛ) or require the use of

QCD sum rules for input parameters to calculate tc.
Using the latest B → ππ data [1], Eq. (10) gives

f0
in = |Vub|f+(0) = (7.2 ± 1.8) × 10−4 . (12)

This estimate of 25% uncertainty accounts for the 10%
experimental uncertainty, and ∼ 20% theory uncertainty
from perturbative and power corrections. The experi-
mental uncertainty includes γ = 70◦ ± 15◦ which cov-
ers the range from global fits and that preferred by the
SCET based B → ππ method from Ref. [15]. As noted
in [7] the dependence of |Vub|f+(0) on γ is mild for larger
γ’s. Estimates for perturbative and power corrections to
Eq. (10) are each at the ∼ 10% level even when “chirally
enhanced” terms are included [14, 16].

Next we consider lattice QCD input points, fk
in, which

are crucial in fixing the form factor normalization. Tech-
nically, using staggered fermions might add model depen-
dence from the (detM)1/4 trick. We take the remark-
able agreement in [17] as an indication that this model
dependence is small.Using the unquenched MILC config-
urations, Refs [2, 3] find consistent results with different
heavy quark actions. As our default we use the Fermilab
results since they have a point at larger q2:

f1
in = f+(15.87) = 0.799± 0.058 ± 0.088 , (13)

f2
in = f+(18.58) = 1.128± 0.086 ± 0.124 ,

f3
in = f+(24.09) = 3.262± 0.324 ± 0.359 .

The first errors in (13) are statistical, ±σi, and the second
are 11% systematic errors, ±yf i

in, with y = 0.11. For the
lattice error matrix, we use Eij = σ2

i δij + y2f i
inf

j
in, which

takes σi uncorrelated and includes 100% correlation in

P and phi contain most of the complexity of the 
form factors.  Unitarity requires simply that

Builds in effects of B* pole without spoiling 
unitarity constraints.
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With                    ,

the significance of the small range of the z variables becomes 
apparent.   To obtain the form factors to high accuracy, say 1%, 
only a small number of parameters is needed, only 5 or 6 even 
in the case of B->π l ν.
 
B->π l ν:   -0.34<z<0.22,
D->π l ν :  -0.17<z<0.16,
D->K l ν :  -0.04<z<0.06,
B->D l ν :   -0.02<z<0.04.
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A Precision Model Independent Determination of |Vub| from B → πlν

M. Christian Arnesen,1 Ben Grinstein,2 Ira Z. Rothstein,3 and Iain W. Stewart1

1Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139
2Department of Physics, University of California, San Diego, La Jolla, CA, 92093
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A precision method for determining |Vub| using the full range in q2 of B → π"ν data is presented.
At large q2 the form factor is taken from unquenched lattice QCD, at q2 = 0 we impose a model
independent constraint obtained from B → ππ using the soft-collinear effective theory, and the shape
is constrained using QCD dispersion relations. We find |Vub| = (3.54 ± 0.17 ± 0.44) × 10−3. With
5% experimental error and 12% theory error, this is competitive with inclusive methods. Theory
error is dominated by the input points, with negligible uncertainty from the dispersion relations.

The remarkable success of the B-factories have lead to
a new era for precision results in the CKM sector of the
standard model. For |Vub| inclusive and exclusive mea-
surements from semileptonic decays should yield a precise
value, but must surmount the now dominant theoreti-
cal uncertainties. For inclusive decays measuring |Vub| is
more difficult than |Vcb| because cuts make observables
either sensitive to a structure function which demands
input from radiative decays, or require neutrino recon-
struction. The heavy flavor averaging group (HFAG)’s
average from inclusive decays based on operator product
expansion techniques is 103|Vub| = 4.7±0.4 [1]. Exclusive
techniques for |Vcb| use heavy quark symmetry (HQS) to
normalize the form factors. For |Vub| from B → π"ν̄ sym-
metry techniques fall flat, and model independent form
factor information relies on precision lattice QCD.

Recently, the Fermilab [2] and HPQCD [3] groups have
presented unquenched lattice results for B → π form
factors. Uncertainties in the discretization restrict the
kinematics to pions that are not too energetic Eπ

<∼
1 GeV, which for the invariant mass of the lepton pair
is 15 GeV2 <∼ q2 ≤ 26.4 GeV2. Unfortunately, since the
phase space goes as |$pπ|3, there are less events and more
experimental uncertainty in this region. For B̄0 → π+"ν̄

dΓ/dq2 = N |Vub|2 |$pπ|3 |f+(q2)|2 , (1)

where N = G2
F /(24π3). For example, Belle [4] found

103 |Vub|q2≥16 =

{

3.87 ± 0.70 ± 0.22+0.85
−0.51 (FNAL)

4.73 ± 0.85 ± 0.27+0.74
−0.50 (HPQCD)

(2)

where the errors are statistical, systematic, and theoret-
ical. In quadrature this is an uncertainty of ∼ 25%.

The latest Babar, CLEO, and Belle average is [5],

Br(B̄0 → π+"−ν̄) = (1.39 ± 0.12)× 10−4 , (3)

which should yield |Vub| at the % 5% level. So far extrac-
tions of |Vub| from the total Br rely on QCD sum rules [6]
and quark models for input. For example, HFAG reports
results on Br(B → {π, ρ, ω}"ν̄) that lead to central values

103|Vub| = 2.9 to 3.9 [1]. Due to the uncertainty they do
not currently average over exclusive extractions of |Vub|.

In this letter we present a model independent exclu-
sive method for determining the entire B → π form fac-
tor f+(q2) and thus |Vub|. A total uncertainty δ|Vub| %
13% is achieved by combining 1) the unquenched lat-
tice results [2, 3], 2) a constraint at q2 = 0 derived
from SCET [7] and B → ππ data, which determines
|Vub|f+(0), and 3) dispersion relations and analyticity
which allow us to interpolate over the entire region
of q2 by bounding the shape of f+(q2) between input
points [8, 9]. The SCET constraint induces an additional
implicit functional dependence on |Vub| in the form fac-
tors. Our first analysis uses just the total Br, yielding an
analytic formula for |Vub|. The second includes q2-spectra
with a χ2 minimization which allows the experimental
data to constrain the theoretical uncertainty. A differ-
ent approach for including the q2-spectra was developed
in [10] based on the Lellouch distribution method [11].

Analyticity Bounds. We briefly review how analytic-
ity constrains the B → π form factors, f+ and f0, re-
ferring to [8, 9, 12] for more detail. Our notation fol-
lows [12], and we set t± = (mB ± mπ)2. Suitable mo-
ments of a time ordered product of currents, Πµν(q2) =
i
∫

d4x eiqx〈0|TJµ(x)J†ν (0)|0〉 can be computed with an
OPE in QCD and are related by a dispersion relation to
a positive definite sum over exclusive states

ImΠµν=

∫

[p.s.] δ(q−pBπ)〈0|J†ν |B̄π〉〈B̄π|Jµ|0〉 + . . . (4)

Keeping this first term bounds a weighted integral over
t+ ≤ t ≤ ∞ of the squared Bπ production form factor.
Using analyticity and crossing symmetry this constrains
the shape in t = q2 of the form factors for B → π in the
physical region 0 ≤ t ≤ t−. The results are simple to
express by writing each of f+(t), f0(t) as a series

f(t) =
1

P (t)φ(t, t0)

∞
∑

k=0

ak(t0) z(t, t0)
k , (5)

with coefficients ak that parameterize different allowed

X XXXXXX →

q2
z
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use this fact to obtain strict bound on the form factors from a 
combination of SCET and lattice data.
 As we shall see, lattice data by themselves don’t completely 
constrain the form factors.

3

the systematic error. Of the eleven reported lattice points
we use only three at separated q2. This maximizes the
shape information while minimizing additional correla-
tions that may occur in neighboring points, for example
from the chiral extrapolation.

Chiral perturbation theory (ChPT) gives model inde-
pendent input for f+ (and f0) when Eπ ∼ mπ, namely

f+

(

q2(Eπ)
)

=
gfBmB

2fπ(Eπ+mB∗−mB)

[

1+ O
(Eπ

∆

)]

, (14)

where g is the B∗Bπ coupling and fB the decay con-
stant. Possible pole contributions from the low lying
Jπ = 0+, 1+, 2+ states vanish by parity and angular
momentum conservation. The first corrections scale as
Eπ/∆, where ∆ ∼ 600 MeV is the mass splitting to the
first radially excited 1− state above the B∗. We take g =
0.5. This is compatible with D∗ decays using heavy quark
symmetry. Updating the ChPT fit in [18] by including
both Γ(D∗+) and D∗ Br-ratios, gives gD∗Dπ # 0.51 (at
an order where there are no counterterm operators and
no 1/mc corrections absorbed in g). For the lattice aver-
age Hashimoto [19] gives fB = 189 MeV. Thus,

f4
in = f+(26.42) = 10.38 ± 3.63 , (15)

where this fairly conservative 35% error is from uncer-
tainty in gfB, and from the mπ/∆ ∼ 23% corrections.

Determining f+. To determine f+(t) we drop ak≥6 in
Eq.(5), and take a5 → a5(1 − z2)−1/2 which properly
bounds the truncation error [20]. The f0−4 input points
then fix a0−4 as functions of a5. Functions that bound
f+(t) are determined from the maximum and minimum
values of a5 satisfying (9) with nA = 5. Thus we solve

18.3a0+3.96a1+0.857a2+0.185a3+0.0401a4 (16)

+0.00887a5 = f0/|Vub| ,
37.8a0+0.960a1+0.0244a2+0.000619a3+1.57×10−5a4

+4.00×10−7a5 = f1 , . . . ,

304.0a0−103.6a1+35.3a2−12.0a3+4.10a4−1.49a5=f4,

a2
0 + a2

1 + a2
2 + a2

3 + a2
4 + a2

5 = 1 .

In Eq.(5) this yields two solutions, F±, with parameters

f+(t) = F±(t, {f0/|Vub|, f1, f2, f3, f4}) . (17)

To see how well these solutions bound the form factor
we fix |Vub| = 3.6 × 10−3, f i = f i

in and plot the bounds
as the two black solid lines in Fig. 1. The curves lie on
top of each other. For comparison we show dashed lines
for the bounds on f+ and f0 obtained using four lattice
points (shown as dots). With these inputs the constraint
f+(0) = f0(0) is less effective than using the SCET point.
|Vub| from total Br-fraction. Equating Eq.(3) with the

theoretical rate obtained using Eqs.(17) gives an analytic
equation for |Vub|. With f i = f i

in the solution is

|Vub| = (4.13 ± 0.21 ± 0.58) × 10−3 . (18)

0.8

0.6

0.4

0.2

0.0
2520151050

q2

1- q2( ) f (q2)

f = f0

f = f+

FIG. 1: Upper and lower bounds on the form factors from
dispersion relations, where q̂2 = q2/m2

B∗ and the (1−q̂2) factor
removes the B∗ pole. The overlapping solid black lines are
bounds F± derived with the SCET point, 3 lattice points,
and the ChPT point (diamonds with error bars). The dashed
lines are the bounds derived using instead four lattice points
(shown by the dots). Input point errors are not included in
these lines, and are analyzed in the text.

Type of Error Variation From δ|Vub|
Br δ|Vub|

q2

Input Points 1-σ correlated errors ±14% ±12%

Bounds F+ versus F− ±0.6% ±0.04%

mpole
b 4.88 ± 0.40 ±0.1% ±0.2%

OPE order 2 loop → 1 loop −0.2% +0.3%

TABLE I: Summary of theoretical uncertainties on |Vub|. Re-
sults are shown for an analysis from the total branching frac-

tion, δ|Vub|
Br, and from using the dΓ/dq2 spectrum, δ|Vub|

q2

.
For the input point error we quote the average from F±.

The first error is experimental, 5.2%, propagated from
Eq.(3). The second error, 14%, is from theory and is
broken down in Table I. It is dominated by the input
points. The bound uncertainty from the choice of so-
lution is < 1% (but would grow to ±12% without the
SCET point). The error from mb and the order in the
OPE and are very small because shifts in the normaliza-

tion through χ(0)
f+

are compensated by shifts in the an co-
efficients, except for the last term a5 which gives a small
contribution. To ensure consistency with the dispersion
bounds the input point uncertainty is calculated using
the Lellouch-method of generating random points from
Gaussians [11], giving 103|Vub| = (3.96 ± 0.20 ± 0.56).
Our distributions were determined using Eqs. (12,13,15)
and the correlation matrix Eij . Taken individually the
SCET and ChPT points give ∼ 5% error, so the lattice
uncertainty dominates.
|Vub| from q2 spectra. Results for partial branching

fractions, (Brexp
i ± δBri), over different bins in q2 are

also available. Cleo [21] and Belle [4] present results
for 3 bins with untagged and π+ semileptonic tags re-
spectively. Babar [5] recently presented total rates from
hadronic & leptonic π+ and π0 tags as well as π+ semilep-
tonic tagged data in 3-bins and untagged data over 5-
bins. By fitting to these 17 pieces of data with Minuit

True lattice errors in extrapolation.
(Need to do more work than AGRS to reduce.

From SCET.
With lattice, yields tight 
bound on form factor 
(invisible within black 
line). 

Fermilab/MILC lattice data

Point from 
chiral PT 
doesn’t 
have 
much 
effect on 
fit.
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Questions
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• What can lattice do by itself?

• (For lattice gauge theorists.)

• How can we get the best bound on Vub by 
combining information from all methods?

• (For experimentalists and all phenomenologists.)
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Effect of mapping on data

Not much curvature is seen in D→Klν with or without remapping.
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Same for D→πlν
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Significant curvature in 
B→πlν data ...

is due to calculable perturbative 
effects.  No visible curvature 
remains when these are 
factored out.
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B→πlν actually like B→Dlν.
Data is well described by a normalization and a slope.
Experiment gives the slope.
Taking the normalization from the lattice yields Vub.
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A Precision Model Independent Determination of |Vub| from B → πlν

M. Christian Arnesen,1 Ben Grinstein,2 Ira Z. Rothstein,3 and Iain W. Stewart1

1Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139
2Department of Physics, University of California, San Diego, La Jolla, CA, 92093

3Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213

A precision method for determining |Vub| using the full range in q2 of B → π"ν data is presented.
At large q2 the form factor is taken from unquenched lattice QCD, at q2 = 0 we impose a model
independent constraint obtained from B → ππ using the soft-collinear effective theory, and the shape
is constrained using QCD dispersion relations. We find |Vub| = (3.54 ± 0.17 ± 0.44) × 10−3. With
5% experimental error and 12% theory error, this is competitive with inclusive methods. Theory
error is dominated by the input points, with negligible uncertainty from the dispersion relations.

The remarkable success of the B-factories have lead to
a new era for precision results in the CKM sector of the
standard model. For |Vub| inclusive and exclusive mea-
surements from semileptonic decays should yield a precise
value, but must surmount the now dominant theoreti-
cal uncertainties. For inclusive decays measuring |Vub| is
more difficult than |Vcb| because cuts make observables
either sensitive to a structure function which demands
input from radiative decays, or require neutrino recon-
struction. The heavy flavor averaging group (HFAG)’s
average from inclusive decays based on operator product
expansion techniques is 103|Vub| = 4.7±0.4 [1]. Exclusive
techniques for |Vcb| use heavy quark symmetry (HQS) to
normalize the form factors. For |Vub| from B → π"ν̄ sym-
metry techniques fall flat, and model independent form
factor information relies on precision lattice QCD.

Recently, the Fermilab [2] and HPQCD [3] groups have
presented unquenched lattice results for B → π form
factors. Uncertainties in the discretization restrict the
kinematics to pions that are not too energetic Eπ

<∼
1 GeV, which for the invariant mass of the lepton pair
is 15 GeV2 <∼ q2 ≤ 26.4 GeV2. Unfortunately, since the
phase space goes as |$pπ|3, there are less events and more
experimental uncertainty in this region. For B̄0 → π+"ν̄

dΓ/dq2 = N |Vub|2 |$pπ|3 |f+(q2)|2 , (1)

where N = G2
F /(24π3). For example, Belle [4] found

103 |Vub|q2≥16 =

{

3.87 ± 0.70 ± 0.22+0.85
−0.51 (FNAL)

4.73 ± 0.85 ± 0.27+0.74
−0.50 (HPQCD)

(2)

where the errors are statistical, systematic, and theoret-
ical. In quadrature this is an uncertainty of ∼ 25%.

The latest Babar, CLEO, and Belle average is [5],

Br(B̄0 → π+"−ν̄) = (1.39 ± 0.12)× 10−4 , (3)

which should yield |Vub| at the % 5% level. So far extrac-
tions of |Vub| from the total Br rely on QCD sum rules [6]
and quark models for input. For example, HFAG reports
results on Br(B → {π, ρ, ω}"ν̄) that lead to central values

103|Vub| = 2.9 to 3.9 [1]. Due to the uncertainty they do
not currently average over exclusive extractions of |Vub|.

In this letter we present a model independent exclu-
sive method for determining the entire B → π form fac-
tor f+(q2) and thus |Vub|. A total uncertainty δ|Vub| %
13% is achieved by combining 1) the unquenched lat-
tice results [2, 3], 2) a constraint at q2 = 0 derived
from SCET [7] and B → ππ data, which determines
|Vub|f+(0), and 3) dispersion relations and analyticity
which allow us to interpolate over the entire region
of q2 by bounding the shape of f+(q2) between input
points [8, 9]. The SCET constraint induces an additional
implicit functional dependence on |Vub| in the form fac-
tors. Our first analysis uses just the total Br, yielding an
analytic formula for |Vub|. The second includes q2-spectra
with a χ2 minimization which allows the experimental
data to constrain the theoretical uncertainty. A differ-
ent approach for including the q2-spectra was developed
in [10] based on the Lellouch distribution method [11].

Analyticity Bounds. We briefly review how analytic-
ity constrains the B → π form factors, f+ and f0, re-
ferring to [8, 9, 12] for more detail. Our notation fol-
lows [12], and we set t± = (mB ± mπ)2. Suitable mo-
ments of a time ordered product of currents, Πµν(q2) =
i
∫

d4x eiqx〈0|TJµ(x)J†ν (0)|0〉 can be computed with an
OPE in QCD and are related by a dispersion relation to
a positive definite sum over exclusive states

ImΠµν=

∫

[p.s.] δ(q−pBπ)〈0|J†ν |B̄π〉〈B̄π|Jµ|0〉 + . . . (4)

Keeping this first term bounds a weighted integral over
t+ ≤ t ≤ ∞ of the squared Bπ production form factor.
Using analyticity and crossing symmetry this constrains
the shape in t = q2 of the form factors for B → π in the
physical region 0 ≤ t ≤ t−. The results are simple to
express by writing each of f+(t), f0(t) as a series

f(t) =
1

P (t)φ(t, t0)

∞
∑

k=0

ak(t0) z(t, t0)
k , (5)

with coefficients ak that parameterize different allowed

B→π

P and φ are responsible for the curvature seen so far in the Bπ form 
factor.  Task of lattice and experiment is to bound or measure the 
curvature in the power series.
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A Precision Model Independent Determination of |Vub| from B → πlν

M. Christian Arnesen,1 Ben Grinstein,2 Ira Z. Rothstein,3 and Iain W. Stewart1

1Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139
2Department of Physics, University of California, San Diego, La Jolla, CA, 92093
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A precision method for determining |Vub| using the full range in q2 of B → π"ν data is presented.
At large q2 the form factor is taken from unquenched lattice QCD, at q2 = 0 we impose a model
independent constraint obtained from B → ππ using the soft-collinear effective theory, and the shape
is constrained using QCD dispersion relations. We find |Vub| = (3.54 ± 0.17 ± 0.44) × 10−3. With
5% experimental error and 12% theory error, this is competitive with inclusive methods. Theory
error is dominated by the input points, with negligible uncertainty from the dispersion relations.

The remarkable success of the B-factories have lead to
a new era for precision results in the CKM sector of the
standard model. For |Vub| inclusive and exclusive mea-
surements from semileptonic decays should yield a precise
value, but must surmount the now dominant theoreti-
cal uncertainties. For inclusive decays measuring |Vub| is
more difficult than |Vcb| because cuts make observables
either sensitive to a structure function which demands
input from radiative decays, or require neutrino recon-
struction. The heavy flavor averaging group (HFAG)’s
average from inclusive decays based on operator product
expansion techniques is 103|Vub| = 4.7±0.4 [1]. Exclusive
techniques for |Vcb| use heavy quark symmetry (HQS) to
normalize the form factors. For |Vub| from B → π"ν̄ sym-
metry techniques fall flat, and model independent form
factor information relies on precision lattice QCD.

Recently, the Fermilab [2] and HPQCD [3] groups have
presented unquenched lattice results for B → π form
factors. Uncertainties in the discretization restrict the
kinematics to pions that are not too energetic Eπ

<∼
1 GeV, which for the invariant mass of the lepton pair
is 15 GeV2 <∼ q2 ≤ 26.4 GeV2. Unfortunately, since the
phase space goes as |$pπ|3, there are less events and more
experimental uncertainty in this region. For B̄0 → π+"ν̄

dΓ/dq2 = N |Vub|2 |$pπ|3 |f+(q2)|2 , (1)

where N = G2
F /(24π3). For example, Belle [4] found

103 |Vub|q2≥16 =

{

3.87 ± 0.70 ± 0.22+0.85
−0.51 (FNAL)

4.73 ± 0.85 ± 0.27+0.74
−0.50 (HPQCD)

(2)

where the errors are statistical, systematic, and theoret-
ical. In quadrature this is an uncertainty of ∼ 25%.

The latest Babar, CLEO, and Belle average is [5],

Br(B̄0 → π+"−ν̄) = (1.39 ± 0.12)× 10−4 , (3)

which should yield |Vub| at the % 5% level. So far extrac-
tions of |Vub| from the total Br rely on QCD sum rules [6]
and quark models for input. For example, HFAG reports
results on Br(B → {π, ρ, ω}"ν̄) that lead to central values

103|Vub| = 2.9 to 3.9 [1]. Due to the uncertainty they do
not currently average over exclusive extractions of |Vub|.

In this letter we present a model independent exclu-
sive method for determining the entire B → π form fac-
tor f+(q2) and thus |Vub|. A total uncertainty δ|Vub| %
13% is achieved by combining 1) the unquenched lat-
tice results [2, 3], 2) a constraint at q2 = 0 derived
from SCET [7] and B → ππ data, which determines
|Vub|f+(0), and 3) dispersion relations and analyticity
which allow us to interpolate over the entire region
of q2 by bounding the shape of f+(q2) between input
points [8, 9]. The SCET constraint induces an additional
implicit functional dependence on |Vub| in the form fac-
tors. Our first analysis uses just the total Br, yielding an
analytic formula for |Vub|. The second includes q2-spectra
with a χ2 minimization which allows the experimental
data to constrain the theoretical uncertainty. A differ-
ent approach for including the q2-spectra was developed
in [10] based on the Lellouch distribution method [11].

Analyticity Bounds. We briefly review how analytic-
ity constrains the B → π form factors, f+ and f0, re-
ferring to [8, 9, 12] for more detail. Our notation fol-
lows [12], and we set t± = (mB ± mπ)2. Suitable mo-
ments of a time ordered product of currents, Πµν(q2) =
i
∫

d4x eiqx〈0|TJµ(x)J†ν (0)|0〉 can be computed with an
OPE in QCD and are related by a dispersion relation to
a positive definite sum over exclusive states

ImΠµν=

∫

[p.s.] δ(q−pBπ)〈0|J†ν |B̄π〉〈B̄π|Jµ|0〉 + . . . (4)

Keeping this first term bounds a weighted integral over
t+ ≤ t ≤ ∞ of the squared Bπ production form factor.
Using analyticity and crossing symmetry this constrains
the shape in t = q2 of the form factors for B → π in the
physical region 0 ≤ t ≤ t−. The results are simple to
express by writing each of f+(t), f0(t) as a series

f(t) =
1

P (t)φ(t, t0)

∞
∑

k=0

ak(t0) z(t, t0)
k , (5)

with coefficients ak that parameterize different allowed

B→π

Program for lattice and experiment:

1. Determine and compare slopes in z.

2. Compare normalizations, ➞ |Vub|.

3. Search for curvature.
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Application to lattice data
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D ! and D K results (hep-ph/0408306, accepted for PRL)
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Current method fitting with 
BK is convenient, but 
seems to have introduced 
model dependence.

The unitarity based 
parameterization formulas 
offer a simple way of 
limiting the number of 
parameters without 
introducing model 
dependence.

Statistical errors are smaller at 
high momentum than at low momentum.
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Replot of our data with 
P and phi removed.
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A precision method for determining |Vub| using the full range in q2 of B → π"ν data is presented.
At large q2 the form factor is taken from unquenched lattice QCD, at q2 = 0 we impose a model
independent constraint obtained from B → ππ using the soft-collinear effective theory, and the shape
is constrained using QCD dispersion relations. We find |Vub| = (3.54 ± 0.17 ± 0.44) × 10−3. With
5% experimental error and 12% theory error, this is competitive with inclusive methods. Theory
error is dominated by the input points, with negligible uncertainty from the dispersion relations.

The remarkable success of the B-factories have lead to
a new era for precision results in the CKM sector of the
standard model. For |Vub| inclusive and exclusive mea-
surements from semileptonic decays should yield a precise
value, but must surmount the now dominant theoreti-
cal uncertainties. For inclusive decays measuring |Vub| is
more difficult than |Vcb| because cuts make observables
either sensitive to a structure function which demands
input from radiative decays, or require neutrino recon-
struction. The heavy flavor averaging group (HFAG)’s
average from inclusive decays based on operator product
expansion techniques is 103|Vub| = 4.7±0.4 [1]. Exclusive
techniques for |Vcb| use heavy quark symmetry (HQS) to
normalize the form factors. For |Vub| from B → π"ν̄ sym-
metry techniques fall flat, and model independent form
factor information relies on precision lattice QCD.

Recently, the Fermilab [2] and HPQCD [3] groups have
presented unquenched lattice results for B → π form
factors. Uncertainties in the discretization restrict the
kinematics to pions that are not too energetic Eπ

<∼
1 GeV, which for the invariant mass of the lepton pair
is 15 GeV2 <∼ q2 ≤ 26.4 GeV2. Unfortunately, since the
phase space goes as |$pπ|3, there are less events and more
experimental uncertainty in this region. For B̄0 → π+"ν̄

dΓ/dq2 = N |Vub|2 |$pπ|3 |f+(q2)|2 , (1)

where N = G2
F /(24π3). For example, Belle [4] found

103 |Vub|q2≥16 =

{

3.87 ± 0.70 ± 0.22+0.85
−0.51 (FNAL)

4.73 ± 0.85 ± 0.27+0.74
−0.50 (HPQCD)

(2)

where the errors are statistical, systematic, and theoret-
ical. In quadrature this is an uncertainty of ∼ 25%.

The latest Babar, CLEO, and Belle average is [5],

Br(B̄0 → π+"−ν̄) = (1.39 ± 0.12)× 10−4 , (3)

which should yield |Vub| at the % 5% level. So far extrac-
tions of |Vub| from the total Br rely on QCD sum rules [6]
and quark models for input. For example, HFAG reports
results on Br(B → {π, ρ, ω}"ν̄) that lead to central values

103|Vub| = 2.9 to 3.9 [1]. Due to the uncertainty they do
not currently average over exclusive extractions of |Vub|.

In this letter we present a model independent exclu-
sive method for determining the entire B → π form fac-
tor f+(q2) and thus |Vub|. A total uncertainty δ|Vub| %
13% is achieved by combining 1) the unquenched lat-
tice results [2, 3], 2) a constraint at q2 = 0 derived
from SCET [7] and B → ππ data, which determines
|Vub|f+(0), and 3) dispersion relations and analyticity
which allow us to interpolate over the entire region
of q2 by bounding the shape of f+(q2) between input
points [8, 9]. The SCET constraint induces an additional
implicit functional dependence on |Vub| in the form fac-
tors. Our first analysis uses just the total Br, yielding an
analytic formula for |Vub|. The second includes q2-spectra
with a χ2 minimization which allows the experimental
data to constrain the theoretical uncertainty. A differ-
ent approach for including the q2-spectra was developed
in [10] based on the Lellouch distribution method [11].

Analyticity Bounds. We briefly review how analytic-
ity constrains the B → π form factors, f+ and f0, re-
ferring to [8, 9, 12] for more detail. Our notation fol-
lows [12], and we set t± = (mB ± mπ)2. Suitable mo-
ments of a time ordered product of currents, Πµν(q2) =
i
∫

d4x eiqx〈0|TJµ(x)J†ν (0)|0〉 can be computed with an
OPE in QCD and are related by a dispersion relation to
a positive definite sum over exclusive states

ImΠµν=

∫

[p.s.] δ(q−pBπ)〈0|J†ν |B̄π〉〈B̄π|Jµ|0〉 + . . . (4)

Keeping this first term bounds a weighted integral over
t+ ≤ t ≤ ∞ of the squared Bπ production form factor.
Using analyticity and crossing symmetry this constrains
the shape in t = q2 of the form factors for B → π in the
physical region 0 ≤ t ≤ t−. The results are simple to
express by writing each of f+(t), f0(t) as a series

f(t) =
1

P (t)φ(t, t0)

∞
∑

k=0

ak(t0) z(t, t0)
k , (5)

with coefficients ak that parameterize different allowed

Parameters:
            0.0270086 +-  0.00077                (      -0 +-        1)
           -0.0487598 +-    0.023                (      -0 +-        1)
           -0.0840779 +-     0.25                (      -0 +-        1)
            0.0263769 +-      0.9                (      -0 +-        1)
           -0.0062509 +-     0.99                (      -0 +-        1)

 a0-a4:

a0, a1, and a2 are constrained by our data,
a3,a4, ... are constrained only by unitarity.
(Fit used Gaussian priors instead of step functions given by unitarity.)

Red, our lattice data; green, fit.

Baysian priors
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How well is the form factor constrained 
beyond the end of the data?
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          -0.00715237 +-        1                (      -0 +-        1)
          0.000500307 +-        1                (      -0 +-        1)
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What is f+(0)?
f+(0)*P*phi=0.044+(-.18+/-.06) zm +/-.64 zm2 +/- zm3=0.005 (0.034)

This time, data at a ml=0.02.

So, this fit gives no determination of 
the quadratic term, a2, and a poor 
limit on f+(0).

However,
f+(z=0.1)*P*phi=0.044+(-.18+/-.06) .1 
+/-.64 .12 +/- .13=0.031 (0.009).
So, some constraint beyond the end 
of the data.
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Fitting to f+ and f0 simultaneously may help.
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II. METHOD

In the analysis that follows, it is convenient to write the hadronic amplitude as [10]

〈P |V µ|H〉 =
√

2mH

[
vµ f‖(E) + pµ

⊥ f⊥(E)
]
,

where v = pH/mH , p⊥ = pP − Ev, and E = v · pP = (m2
H + m2

P − q2)/(2mH) is the energy
of the light meson P in the heavy meson H rest frame (pH = 0). We work in this frame
throughout this study. In this frame f‖ and f⊥ are simply proportional to the hadronic
amplitude as

f‖(E) =
〈P |V 0|H〉√

2mH
, (9)

f⊥(E) =
〈P |V i|H〉√

2mH

1

pi
. (10)

The relation between f‖,⊥ and the conventional form factors f0,+ is given by

f0(q
2) =

√
2mH

m2
H −m2

P

[
(mH − E)f‖(E) + (E2 −m2

P )f⊥(E)
]
, (11)

f+(q2) =
1√

2mH

[
f‖(E) + (mH − E)f⊥(E)

]
. (12)

As usual, the hadronic amplitude 〈P |V µ|H〉 is extracted by computing the following
3-point and 2-point correlation functions,

CH→P
3,µ (tx, ty; p) =

∑

x,y

eip·y〈OP (0)V̂µ(y)O†
H(x)〉, (13)

CM
2 (tx; p) =

∑

x

eip·x〈OM(0)O†
M(x)〉 (M = H, P ), (14)

where p = pP and pH = 0 in the first equation, V̂µ = ψ̄hγµψl is the heavy-light vector
current on the lattice, and OH = ψ̄hγ5ψl′ and OP = ψ̄lγ5ψl′ are interpolating operators for
the initial and final states. {h, l, l′} denote quark flavors, which are {b, u, d} for the B → πlν
decay.

In this work, we use an improved staggered fermion action for light quarks (l = u, d, s) and
an improved Wilson fermion action for heavy quarks (h = b, c). To combine the staggered
light quark, which is a 1-component spinor, with the Wilson-type heavy quark in heavy-
light bilinears, we follow the method of Wingate et al. [23]. We convert the staggered quark
propagator gl(x, y) ≡ 〈χl(x)χ̄l(y)〉 into the “naive” quark propagator Gl(x, y) ≡ 〈ψl(x)ψ̄l(y)〉
via

gab
l (x, y) [Ω(x) Ω†(y)]αβ = Gab,αβ

l (x, y), (15)

where Ω(x) = γx0
0 γx1

1 γx2
2 γx3

3 , and {a, b} and {α, β} are color and spin indices, respectively.
The 3- and 2-point functions above are then given in terms of the staggered light quark
propagator gl(x, y) and the Wilson-type heavy quark propagator Gh(x, y) by

CH→P
3,µ (tx, ty; p) =

∑

x,y

eip·y Tr[g†
l (y, 0)Ω†(y)γ5γµGh(y, x)γ5Ω(x)gl′(x, 0)], (16)
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In this work, we use an improved staggered fermion action for light quarks (l = u, d, s) and
an improved Wilson fermion action for heavy quarks (h = b, c). To combine the staggered
light quark, which is a 1-component spinor, with the Wilson-type heavy quark in heavy-
light bilinears, we follow the method of Wingate et al. [23]. We convert the staggered quark
propagator gl(x, y) ≡ 〈χl(x)χ̄l(y)〉 into the “naive” quark propagator Gl(x, y) ≡ 〈ψl(x)ψ̄l(y)〉
via

gab
l (x, y) [Ω(x) Ω†(y)]αβ = Gab,αβ

l (x, y), (15)

where Ω(x) = γx0
0 γx1

1 γx2
2 γx3

3 , and {a, b} and {α, β} are color and spin indices, respectively.
The 3- and 2-point functions above are then given in terms of the staggered light quark
propagator gl(x, y) and the Wilson-type heavy quark propagator Gh(x, y) by

CH→P
3,µ (tx, ty; p) =

∑

x,y

eip·y Tr[g†
l (y, 0)Ω†(y)γ5γµGh(y, x)γ5Ω(x)gl′(x, 0)], (16)

4

Form factors are naturally extracted in lattice 
calculations in terms of the functions

Which have the following relation to the usual form factors:

-) Derive expressions for f⊢ and f= from the unitarity-based 
expressions for f0 and f+.
-) Fit these to lattice data to determine ak for f0 and f+.

(Because constraint f+(q2=0)=f0(q2=0) gives info at q2=0. )
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Heavy quark ideas and semileptonic 
decay

40

The bounds on semileptonic amplitudes discussed so far have 
relied on the fact that the connection of a B meson with a weak 
current and a pion must be less than the connection with all 
possible decay states.

In fact, as is well known, as the mass of the decaying particle 
becomes larger, the branching fraction into particular exclusive 
channels vanishes.

Becher an Hill have calculated the power of the vanishing and 
commented on its importance in form factor bounds.
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Becher and Hill:

41

The bounds discussed so far are wild overestimates of the size 
of the form factors.

Only a small fraction of the total branching rate of heavy 
particles goes into exclusive channels like πlν.

They calculate the fraction as a power of ΛQCD/Mb.

Result:

section is not appreciably altered if additional terms are included.

3 Form factor bounds

To make a fully rigorous determination of |Vub|, the truncation to the three-parameter classes
of curves considered in the previous section requires justification. For instance, if the neglected
terms in (2) or (5) conspired to produce a sharp peak in the form factor at precisely the value
of the lattice input point, then the integrated rate would be overestimated, and the value of
|Vub| underestimated. To prevent this from happening requires some bound on the perversity
of allowed form factor shapes. In practice, we would like to ensure that our extraction of
physical observables is “model-independent” by allowing for arbitrarily many parameters, i.e.,
taking N → ∞ in (2) and kmax → ∞ in (5). Retaining predictive power then demands that a
bound be enforced on the parameters appearing in these expansions.

To bound the coefficients ρk in the expansion (2), we introduce a decomposition of the
integration region, t+ ≤ t1 < · · · < tN+1 < ∞, and define

ρk ≡
1

π

∫ tk+1

tk

dt

t
ImF+(t) , γk ≡

tk
m2

B∗

. (7)

Since F+(t) ∼ t−1 at large t, it follows that

∑

k

|ρk| ≤
1

π

∫

∞

t+

dt

t
|F+(t)| ≡ R , (8)

and this is the desired bound. The integral in (8) is dominated by states with t − t+ ∼ mbΛ,

where F+ ∼ m1/2
b , so that the quantity R is parametrically of order (Λ/mb)1/2, with Λ a

hadronic scale. To be sure that the bound deserves the model-independent moniker, one
should use a very conservative estimate. In our fits we will use R ≤

√
10 and R ≤ 10, i.e., we

allow for an addition factor of 100 or 1000 beyond the dimensional estimate R2 ∼ Λ/mb ∼ 0.1.
The coefficients ak in the expansion (5) can be bounded by requiring that the production

rate of Bπ states, described by the analytically continued form factor, does not overwhelm
the production rate of all states coupling to the current of interest (in this case, the vector
current ūγµb). The latter rate is computable in perturbative QCD using the operator product
expansion (for a pedagogical discussion, see e.g. [10]). The function φ in (6) was chosen such
that the fractional contribution of Bπ states to this rate is given at leading order by

∞
∑

k=0

a2
k =

1

2πi

∮

dz

z
|φ(z)P (z)F+(z)|2 =

m2
b

3

∫

∞

t+

dt

t5
[(t − t+)(t − t−)]3/2|F+(t)|2 ≡ A . (9)

In the heavy quark limit, the leading contributions to the integral A in (9) are of order (Λ/mb)3

and arise from two regions: the region close to threshold, t − t+ ∼ mbΛ, where the pion has
energy E ∼ Λ and the form factor scales as F+ ∼ m1/2

b ; and the region t − t+ ∼ m2
b , where

E ∼ mb and F+ ∼ m−3/2
b (for a discussion of the form factor scalings, see [12]). The region of

very high energies t ( m2
b , where F+ ∼ 1/t, gives a subleading contribution.

6
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Method:

42

q
2

X     XXXXXXXXXXXXXXX

① ②

③

①=②+③=②
Standard complex analysis:

F (q2) = 1
2πi

∮
dt

F (t)
t−q2 = 1

π

∫
∞

t+
dt

ImF (t)
t−q2

Apply standard facts about analytic functions...
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... to the function:

section is not appreciably altered if additional terms are included.
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Use HQET to evaluate size leading 
contributions in the important regions.
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6
In both regions, they obtain A ~ (ΛQCD/Mb)3.

If each ak is expected to be ~ (ΛQCD/Mb)3/2 ~ 0.1
fewer terms are needed to described form factors accurately.



• experimental implication:  N relevant parameters ⇒ need N 

independent measurements (bins) 

1 2 3 4 5 6 7 8 9 10

B→π 

1 2 3 4 5 6 7 8 9 10

B→D  
1 2 3 4 5 6 7 8 9 10

D→K 
1 2 3 4 5 6 7 8 9 10

D→π  

Maximum # parameters at 1% sensitivity:

∆F

F
=

ak

a0

zk <
1

a0

zk
∆F

F
=

ak

a0

zk < zk

(“unitarity”)
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BH prediction for B→π:

a2 will turn out to be ~ 0.1, like a0 and a1.
a3 and a4 will turn out to be negligible.
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Summary

46

• The analyticity-based z expansion limits the number 
of parameters needed to describe form factor data, 
without introducing model dependence.

• In terms of the z expansion, all semileptonic form 
factor data, both lattice and experiment are 
consistent with straight lines: normalization and 
slope.

• Even B→πlν. 

• Heavy-quark theory arguments explain why this is so,

• and predict that the curvature given by a2 will be measurable only in 
highly accurate lattice and experiment, and that the the effect of 
higher order terms will be negligible.


