•

- •
- •
- •
- •
- •

High Performance, Scalable and Fault-Tolerant MPI over InfiniBand: An Overview of MVAPICH/MVAPICH2 Project

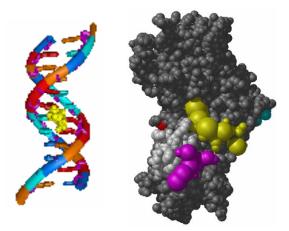
Talk at Tsukuba University

by

Dhabaleswar K. (DK) Panda

The Ohio State University

E-mail: panda@cse.ohio-state.edu


http://www.cse.ohio-state.edu/~panda

Current and Next Generation Applications and Computing Systems

- Big demand for
 - High Performance Computing (HPC)
 - File-systems, multimedia, database, visualization
 - Internet data-centers
- Processor performance continues to grow
 - Chip density doubling every 18 months
 - Multi-core chips are emerging
- Commodity networking also continues to grow
 - Increase in speed and features
 - Affordable pricing
- Clusters are increasingly becoming popular to design next generation computing systems
 - Scalability, Modularity and Upgradeability with compute and network technologies

Tsukuba, Oct 2, 2008

Trends for Computing Clusters in the Top 500 List

Top 500 list of Supercomputers (<u>www.top500.org</u>)

June 2001: 33/500 (6.6%)	June 2005: 304/500 (60.8%)
Nov 2001: 43/500 (8.6%)	Nov 2005: 360/500 (72.0%)
June 2002: 80/500 (16%)	June 2006: 364/500 (72.8%)
Nov 2002: 93/500 (18.6%)	Nov 2006: 361/500 (72.2%)
June 2003: 149/500 (29.8%)	June 2007: 373/500 (74.6%)
Nov 2003: 208/500 (41.6%)	Nov 2007: 406/500 (81.2%)
June 2004: 291/500 (58.2%)	June 2008: 400/500 (80.0%)
Nov 2004: 294/500 (58.8%)	Nov 2008: To be Announced

Growth in Commodity Network Technology

Representative commodity networks; their entries into the market

Ethernet (1979 -)	10 Mbit/sec		
Fast Ethernet (1993 -)	100 Mbit/sec		
Gigabit Ethernet (1995 -)	1000 Mbit /sec		
ATM (1995 -)	155/622/1024 Mbit/sec		
Myrinet (1993 -)	1 Gbit/sec		
Fibre Channel (1994 -)	1 Gbit/sec		
InfiniBand (2001 -)	2 Gbit/sec (1X SDR)		
10-Gigabit Ethernet (2001 -)	10 Gbit/sec		
InfiniBand (2003 -)	8 Gbit/sec (4X SDR)		
InfiniBand (2005 -)	16 Gbit/sec (4X DDR)		
	24 Gbit/sec (12X SDR)		
InfiniBand (2007 -)	32 Gbit/sec (4X QDR)		

16 times in the last 7 years

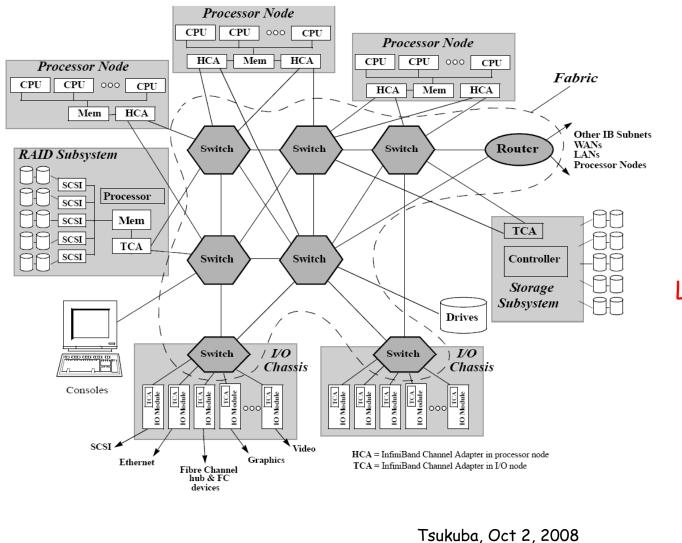
Limitations of Traditional Host-based Protocols

- Ex: TCP/IP, UDP/IP
- Generic architecture for all network interfaces
- Host-handles almost all aspects of communication
 - Data buffering (copies on sender and receiver)
 - Data integrity (checksum)
 - Routing aspects (IP routing)
- Signaling between different layers
 - Hardware interrupt whenever a packet arrives or is sent
 - Software signals between different layers to handle protocol processing in different priority levels

Previous High Performance Network Stacks

- Virtual Interface Architecture
 - Standardized by Intel, Compaq, Microsoft
- Fast Messages (FM)
 - Developed by UIUC
- Myricom GM
 - Proprietary protocol stack from Myricom
- These network stacks set the trend for highperformance communication requirements
 - Hardware offloaded protocol stack
 - Support for fast and secure user-level access to the protocol stack

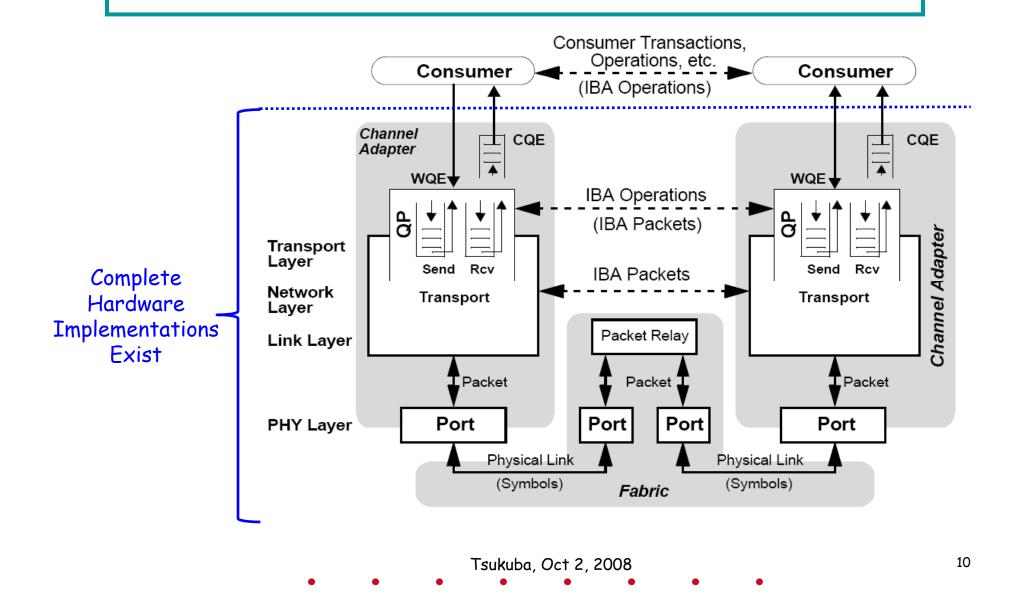
Tsukuba, Oct 2, 2008


IB Trade Association

- IB Trade Association was formed with seven industry leaders (Compaq, Dell, HP, IBM, Intel, Microsoft, and Sun)
- Goal: To design a scalable and high performance communication and I/O architecture by taking an integrated view of computing, networking, and storage technologies
- Many other industry participated in the effort to define the IB architecture specification
- IB Architecture (Volume 1, Version 1.0) was released to public on Oct 24, 2000
 - Latest version 1.2.1 released January 2008
- <u>http://www.infinibandta.org</u>

Presentation Overview

- Overview of InfiniBand
 - Features
 - Products (Hardware and Software)
 - Trends
- MVAPICH and MVAPICH2 Features
- Design Insights and Sample Performance Numbers
- Future Plans
- Conclusions and Final Q&A


A Typical IB Network

Three primary components Channel Adapters Switches/Routers

Links and connectors

Hardware Protocol Offload

Basic IB Capabilities at Each Protocol Layer

- Link Layer
 - CRC-based data integrity, Buffering and Flow-control, Virtual Lanes, Service Levels and QoS, Switching and Multicast, WAN capabilities
- Network Layer
 - Routing and Flow Labels
- Transport Layer
 - Reliable Connection, Unreliable Datagram, Reliable
 Datagram and Unreliable Connection

Tsukuba, Oct 2, 2008

- Shared Receive Queued and Extended Reliable Connections (discussed in more detail later)

Communication and Management Semantics

- Two forms of communication semantics
 - Channel semantics (Send/Recv)
 - Memory semantics (RDMA, Atomic operations)
- Management model
 - A detailed management model complete with managers, agents, messages and protocols
- Verbs Interface
 - A low-level programming interface for performing communication as well as management

Communication in the Channel Semantics (Send-Receive Model)

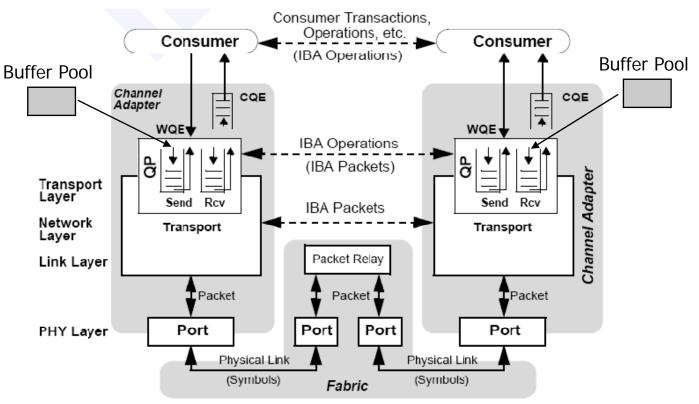
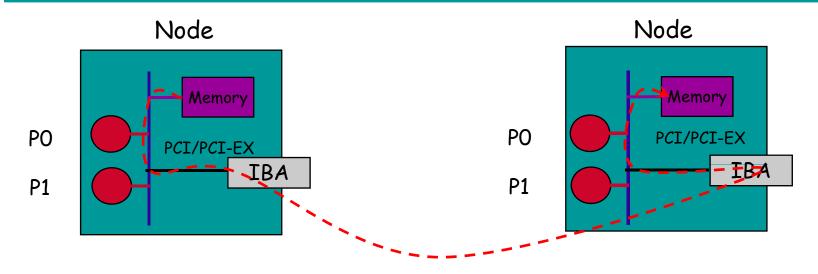
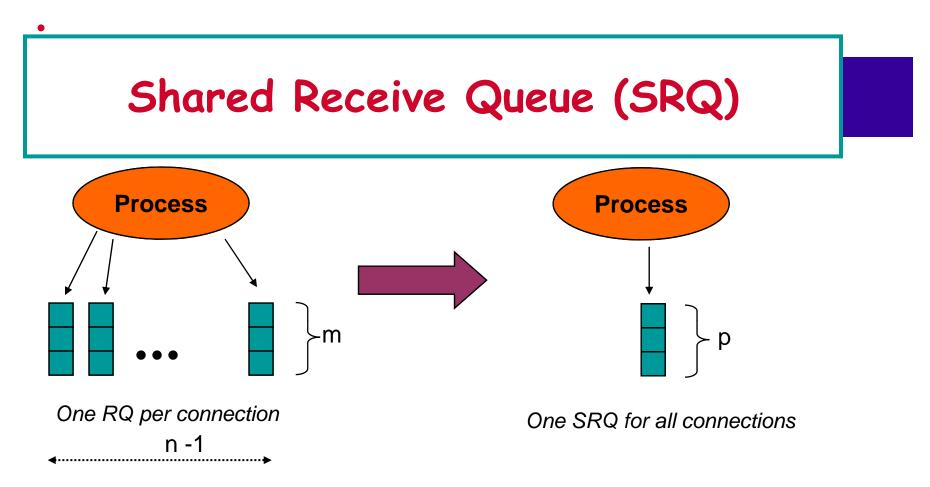



Figure 13 IBA Communication Stack

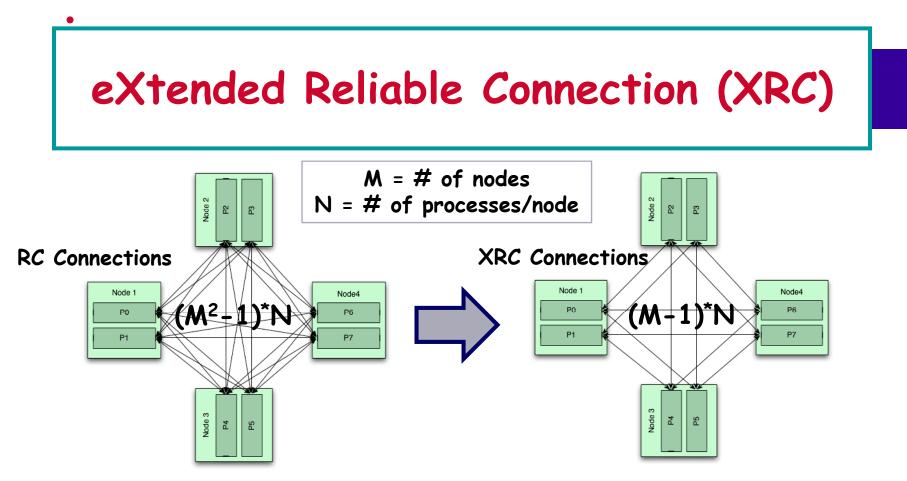
Communication in the Memory Semantics (RDMA Model)


- No involvement by the CPU at the receiver (RDMA Write/Put)
- No involvement by the CPU at the sender (RDMA Read/get)
- 1-2 μ s latency (for short data)
- 1.5 2.6 GBps bandwidth (for large data)
- 3-5 μ s for atomic operation

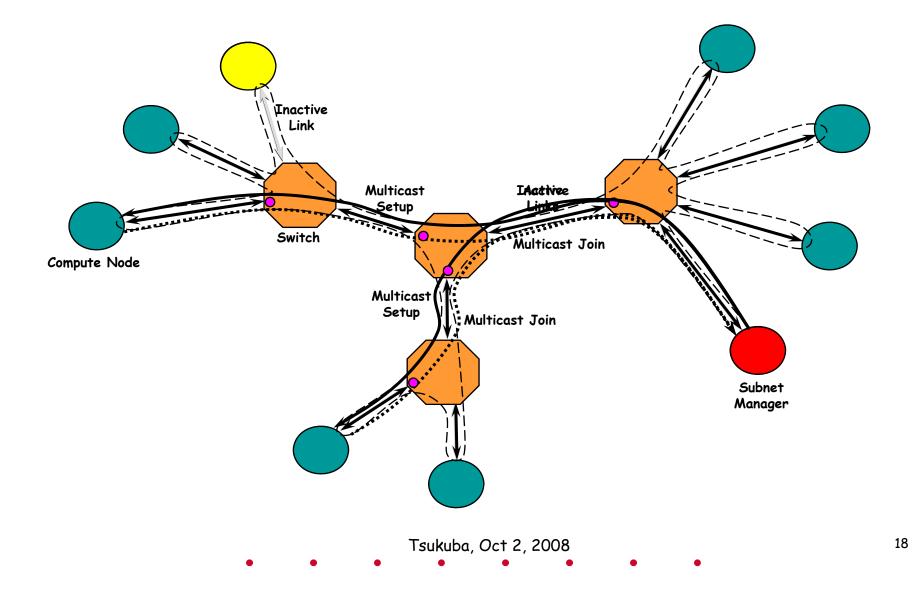
IB Transport Services

Service Type	Connection Oriented	Acknowledged	Transport
Reliable Connection	yes	Yes	IBA
Unreliable Connection	yes	no	IBA
Reliable Datagram	no	Yes	IBA
Unreliable Datagram	no	no	IBA
RAW Datagram	no	no	Raw

Advanced mechanisms like SRQ and new transport eXtended Reliable Connection (XRC) is introduced recently


Tsukuba, Oct 2, 2008

 SRQ is a hardware mechanism in IB by which a process can share receive resources (memory) across multiple connections


Tsukuba, Oct 2, 2008

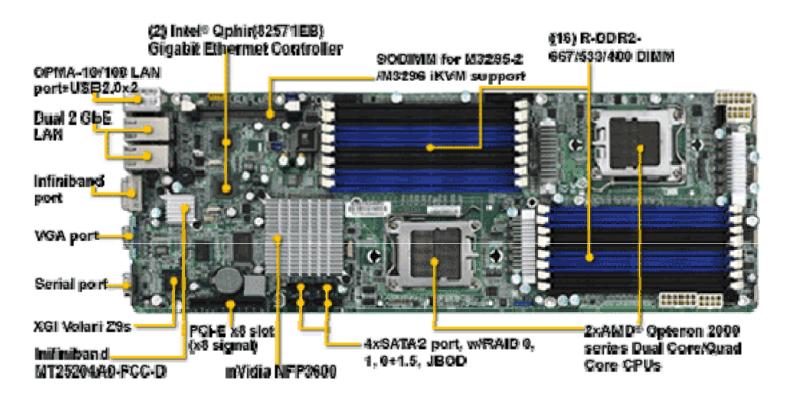
- A new feature, introduced in specification v1.2
- 0 < p << m*(n-1)

- Each QP takes at least one page of memory
 - Connections between all processes is very costly for RC
- New IB Transport added: eXtended Reliable Connection
 - Allows connections between nodes instead of processes

Subnet Manager

Automatic Path Migration

- Automatically utilizes IB multipathing for network fault-tolerance
- Enables migrating connections to a different path
 - Connection recovery in the case of failures
 - Optional Feature
- Available for RC, UC, and RD
- Reliability guarantees for service type maintained during migration


Presentation Overview

- Overview of InfiniBand
 - Features
 - Products (Hardware and Software)
 - Trends
- MVAPICH and MVAPICH2 Features
- Design Insights and Sample Performance Numbers
- Future Plans
- Conclusions and Final Q&A

IB Hardware Products

- Many IB vendors: Mellanox, Voltaire, Cisco, Qlogic
 - Aligned with many server vendors: Intel, IBM, SUN, Dell
 - And many integrators: Appro, Advanced Clustering, Microway, ...
- Broadly two kinds of adapters
 - Offloading (Mellanox) and Onloading (Qlogic)
- Adapters with different interfaces:
 - Dual port 4X with PCI-X (64 bit/133 MHz), PCIe x8, PCIe 2.0 and HT
- MemFree Adapter
 - No memory on HCA \rightarrow Uses System memory (through PCIe)
 - Good for LOM designs (Tyan S2935, Supermicro 6015T-INFB)
- Different speeds
 - SDR (8 Gbps), DDR (16 Gbps) and QDR (32 Gbps)
- Some 12X SDR adapters exist as well (24 Gbps each way)

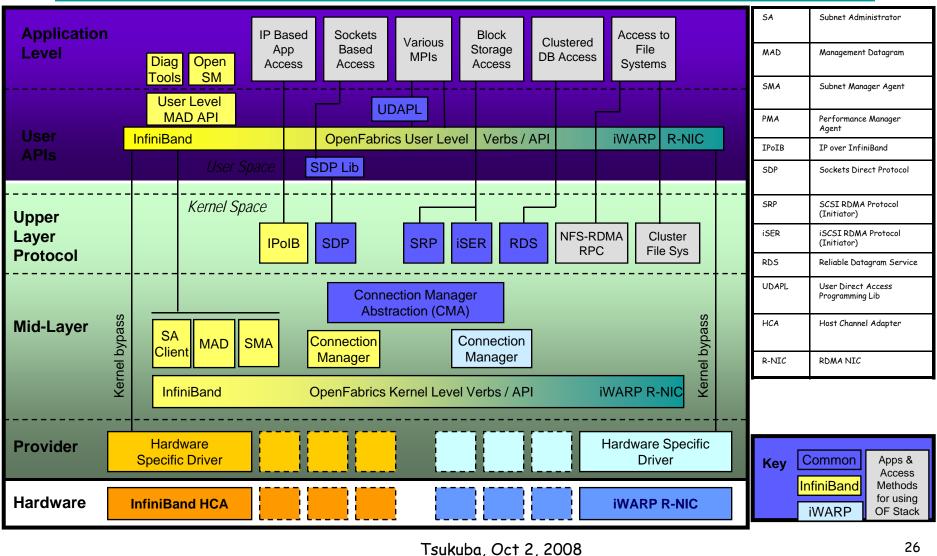
Tyan Thunder S2935 Board

(Courtesy Tyan)

IB Hardware Products (contd.)

- Customized adapters to work with IB switches
 - Cray XD1 (formerly by Octigabay), Cray CX1
- Switches:
 - 4X SDR switch (8-288 ports)
 - 12X ports available for inter-switch connectivity
 - 4X DDR switch (mainly available in 8 to 288 port models)
 - 12X switches (small sizes available)
 - 3456-port "Magnum" switch from SUN \rightarrow used at TACC
 - 72-port "nano magnum" switch with DDR speed
 - New 36-port InfiniScale IV QDR switch silicon by Mellanox
 - Will allow high-density switches to be built
- Switch Routers with Gateways
 - IB-to-FC; IB-to-IP

IB Software Products


- Low-level software stacks
 - VAPI (Verbs-Level API) from Mellanox
 - Modified and customized VAPI from other vendors
 - New initiative: Open Fabrics (formerly OpenIB)
 - <u>http://www.openfabrics.org</u>
 - Open-source code available with Linux distributions
 - Initially IB; later extended to incorporate iWARP
- High-level software stacks
 - MPI, SDP, IPoIB, SRP, iSER, DAPL, NFS, PVFS on various stacks (primarily VAPI and OpenFabrics)

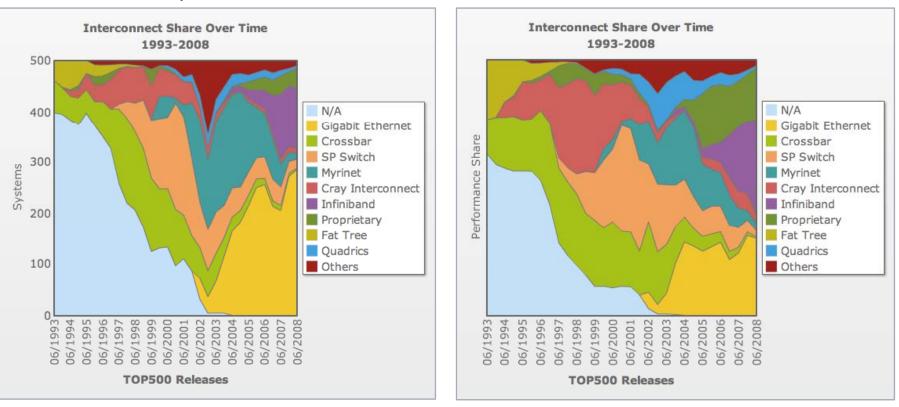
OpenFabrics

- <u>www.openfabrics.org</u>
- Open source organization (formerly OpenIB)
- Incorporates both IB and iWARP in a unified manner
- Focusing on effort for Open Source IBA and iWARP support for Linux and Windows
- Design of complete software stack with `best of breed' components
 - Gen1
 - Gen2 (current focus)
- Users can download the entire stack and run
 - Latest release is OFED 1.3.1
 - OFED 1.4 is being worked out

OPENFABRICS ALLIANCE

OpenFabrics Software Stack

26


IB Installations

- 121 IB clusters (24.2%) in June '08 TOP500 list (<u>www.top500.org</u>)
- 12 IB clusters in TOP25
 - 122,400-cores (RoadRunner) at LANL (1st)
 - 62,976-cores (Ranger) at TACC (4th)
 - 14,336-cores at New Mexico (7th)
 - 14,384-cores at Tata CRL, India (8th)
 - 10,240-cores at TEP, France (10th)
 - 13,728-cores in Sweden (11th)
 - 8,320-cores in UK (18th)
 - 6,720-cores in Germany (19th)
 - 10,000-cores at CCS, Tsukuba, Japan (20th)
 - 9,600-cores at NCSA (23rd)
 - 12,344-cores at Tokyo Inst. of Technology (24th)
 - 13,824-cores at NASA/Columbia (25th)
- More are getting installed

InfiniBand in the Top500

Performance

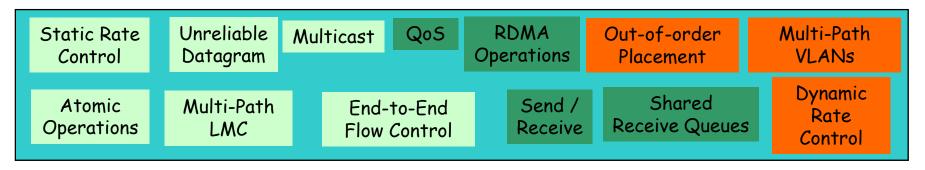
Systems

Percentage share of InfiniBand is steadily increasing

Tsukuba, Oct 2, 2008


28

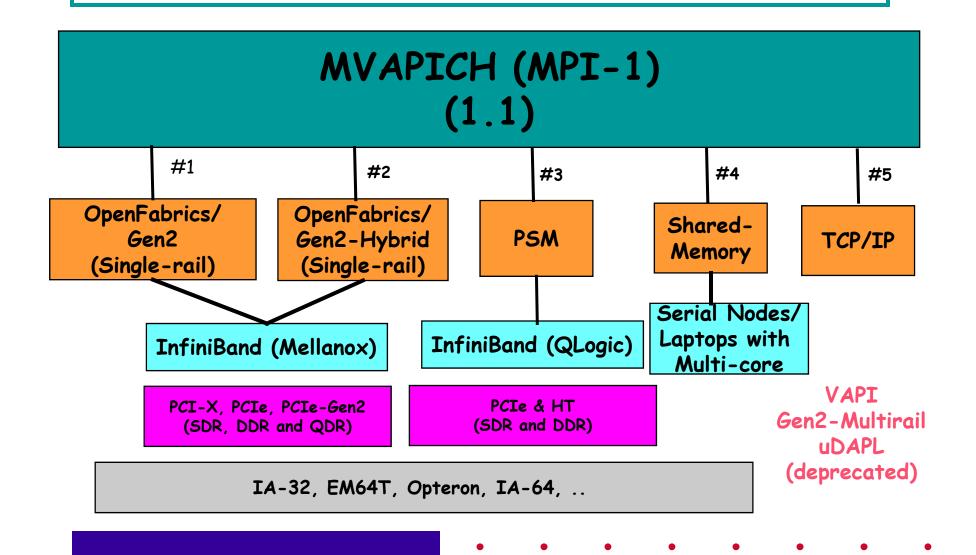
Presentation Overview


- Overview of InfiniBand
 - Features
 - Products (Hardware and Software)
 - Trends
- MVAPICH and MVAPICH2 Features
- Design Insights and Sample Performance Numbers
- Future Plans
- Conclusions and Final Q&A

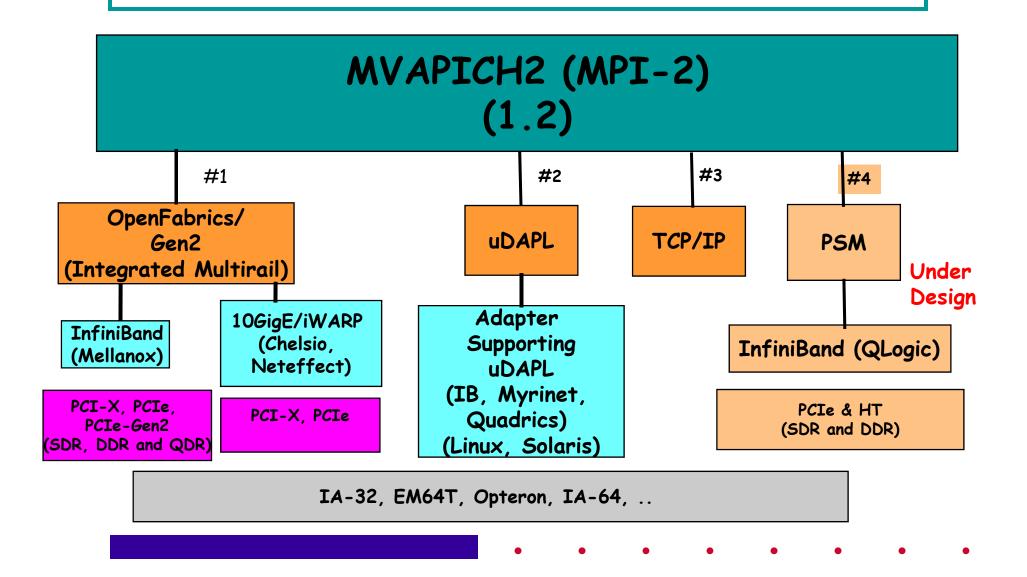
Designing MPI Using IB/iWARP Features

MPI Design Components

Design Alternatives and Solutions



IB and iWARP/Ethernet Features


MVAPICH/MVAPICH2 Software

- High Performance MPI Library for IB and 10GE
 - MVAPICH (MPI-1) and MVAPICH2 (MPI-2)
 - Latest Releases: MVAPICH 1.1RC1 and MVAPICH2 1.2RC2
 - Used by more than 765 organizations in 42 countries
 - More than 23,000 downloads from OSU site directly
 - Empowering many TOP500 clusters
 - 4th ranked 62,976-core cluster (Ranger) at TACC
 - Available with software stacks of many IB, 10GE and server vendors including Open Fabrics Enterprise Distribution (OFED)
 - Also supports uDAPL device to work with any network supporting uDAPL
 - http://mvapich.cse.ohio-state.edu/

MVAPICH 1.1 Architecture

MVAPICH2 1.2 Architecture

Major Features of MVAPICH 1.1

- OpenFabrics-Gen2
 - Scalable job start-up with mpirun_rsh, support for SLURM
 - RC and XRC support
 - Flexible message coalescing
 - Multi-core-aware pt-to-pt communication
 - User-defined processor affinity for multi-core platforms
 - Multi-core-optimized collective communication
 - Asynchronous and scalable on-demand connection management
 - RDMA Write and RDMA Read-based protocols
 - Lock-free Asynchronous Progress for better overlap between computation and communication
 - Polling and blocking support for communication progress
 - Multi-pathing support leveraging LMC mechanism on large fabrics
 - Network-level fault tolerance with Automatic Path Migration (APM)
 - Mem-to-mem reliable data transfer mode (for detection of I/O error with 32-bit CRC)

Major Features of MVAPICH 1.1 (Cont'd)

- OpenFabrics-Gen2-Hybrid
 - Newly introduced interface in 1.1
 - Replaces UD interface in 1.0
 - Targeted for emerging multi-thousand-core clusters to achieve the best performance with minimal memory footprint
 - Most of the features as in Gen2
 - Adaptive selection during run-time (based on application and systems characteristics) to switch between
 - RC and UD (or between XRC and UD) transports
 - Multiple buffer organization with XRC support

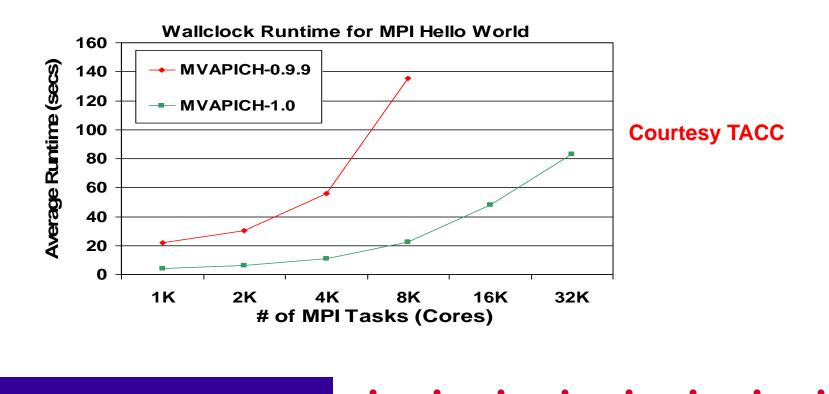
Major Features of MVAPICH2 1.2

- OpenFabrics-Gen2
 - All features as in MVAPICH 1.1 (OpenFabrics-Gen2) except asynchronous progress and XRC
 - RDMA CM-based connection management (Gen2-IB and Gen2-iWARP)
 - Integrated multi-rail support for IB and 10GigE/iWARP
 - Checkpoint-Restart (currently for IB)
 - Systems-level automatic
 - Application-initiated systems-level
- uDAPL
 - Most of the features of OpenFabrics-Gen2 except multirail and checkpointing
 - Flexibility for different adapters , software stacks and OS (Linux and Solaris) supporting uDAPL

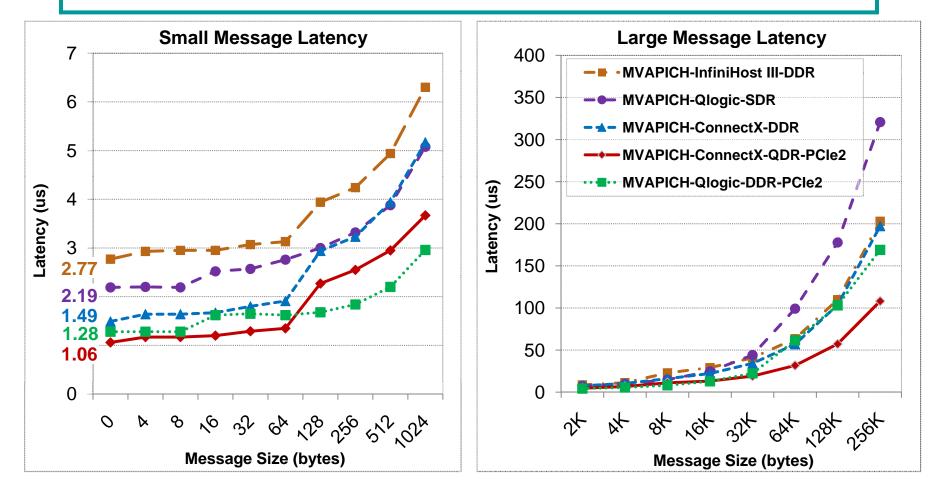
Support for Multiple Interfaces/Adapters

- OpenFabrics/Gen2-IB and OpenFabrics/Gen2-Hybrid
 - All IB adapters supporting OpenFabrics/Gen2
- Qlogic/PSM
 - Qlogic adapters
- OpenFabrics/Gen2-iWARP
 - Chelsio
- uDAPL
 - Linux-IB
 - Solaris-IB
 - Other adapters such as Neteffect 10GigE
- TCP/IP
 - Any adapter supporting TCP/IP interface
- Shared Memory Channel (MVAPICH)
 - for running applications in a node with multi-core processors

Presentation Overview

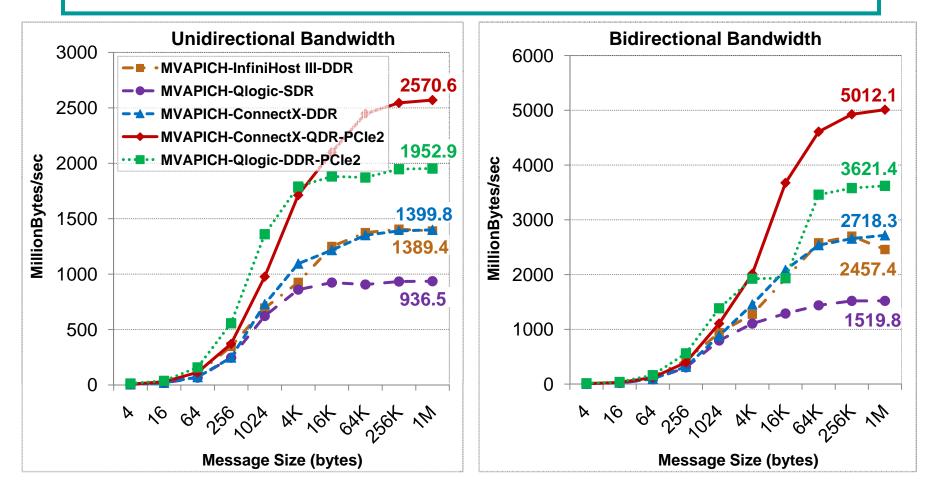

- Overview of InfiniBand
 - Features
 - Products (Hardware and Software)
 - Trends
- MVAPICH and MVAPICH2 Features
- Design Insights and Sample Performance Numbers
- Future Plans
- Conclusions and Final Q&A

Design Insights and Sample Results


- Scalable Job Start-up
- Basic Performance
 - Two-sided Communication
 - One-sided Communication
- Multi-core-aware pt-to-pt communication
- Multi-core-aware Optimized Collective
- Integrated Multi-rail Design
- Scalability for Large-scale Systems (SRQ, UD, Hybrid & XRC)
- Applications-level Scalability
- Asynchronous Progress
- Fault Tolerance

Scalable Startup

- An enhanced mpirun_rsh framework was introduced in MVAPICH 1.0 to significantly cut down job start-up on large clusters
- Is available with MVAPICH 1.1 and MVAPICH2 1.2


One-way Latency: MPI over IB

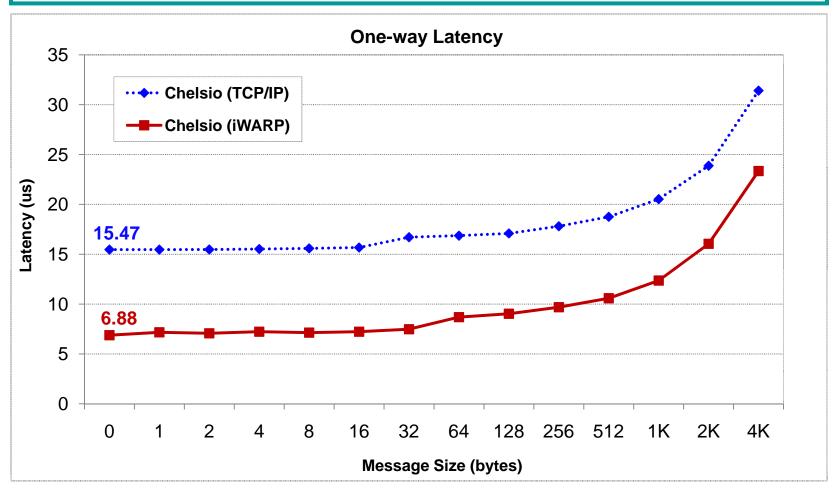
InfiniHost III and ConnectX-DDR: 2.33 GHz Quad-core (Clovertown) Intel with IB switch

ConnectX-QDR-PCIe2: 2.83 GHz Quad-core (Harpertown) Intel with back-to-back

Bandwidth: MPI over IB

InfiniHost III and ConnectX-DDR: 2.33 GHz Quad-core (Clovertown) Intel with IB switch

ConnectX-QDR-PCIe2: 2.83 GHz Quad-core (Harpertown) Intel with back-to-back

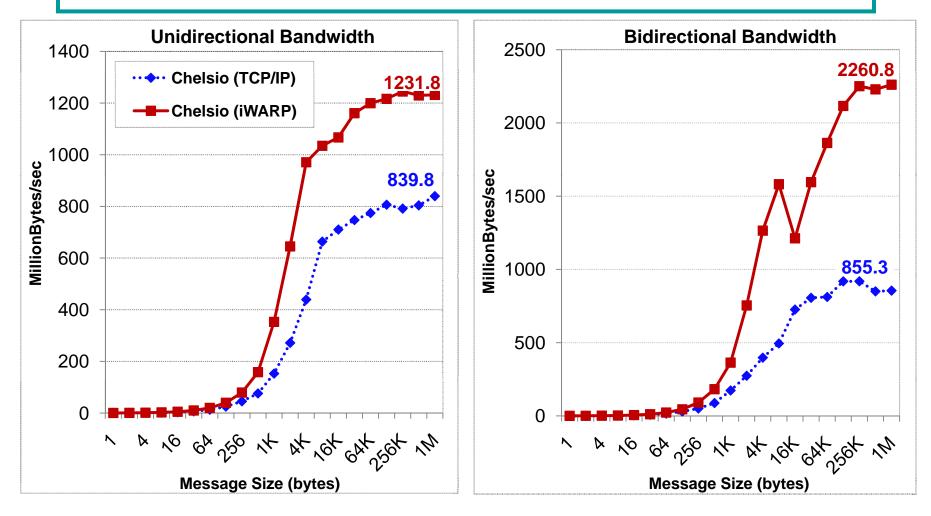

RDMA CM and iWARP Support

- Available starting with MVAPICH2 0.9.8
- RDMA CM is supported for both
 - IB

•

- 10GigE/iWARP

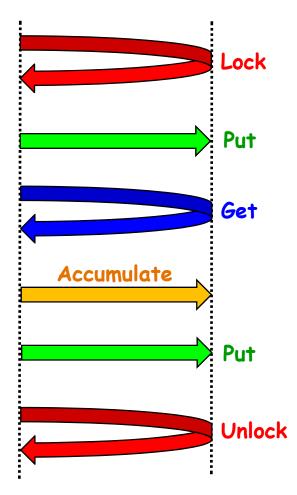
One-way Latency: MPI over iWARP



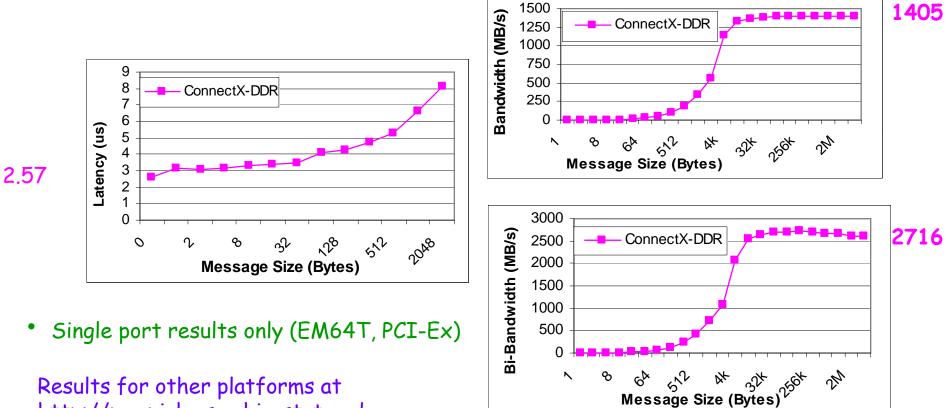
2.0 GHz Quad-core Intel with 10GE (Fulcrum) Switch

Tsukuba, Oct 2, 2008

44


Bandwidth: MPI over iWARP

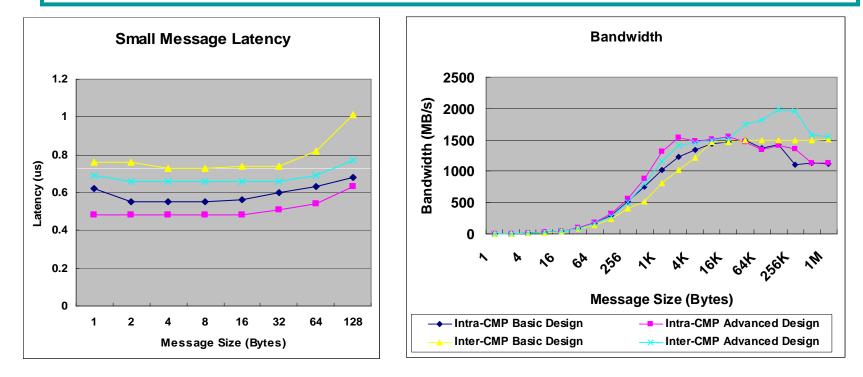
2.0 GHz Quad-core Intel with 10GE (Fulcrum) Switch


• • • • • • •

MPI One-sided Communication

- Specified by the MPI-2 standard
- Data movement operations
 - MPI_Put
 - MPI_Get
 - MPI_Accumulate
- Synchronization operations
 - MPI_Lock/MPI_Unlock
 - MPI_Win_fence
 - MPI_Win_post, MPI_Win_start, MPI_Win_complete, MPI_Win_wait

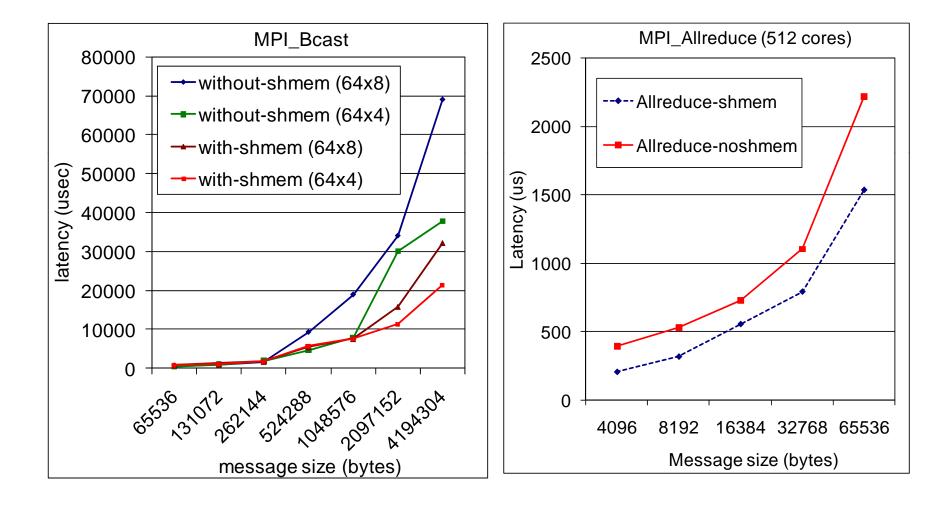
MPI_Put Performance (IB DDR)

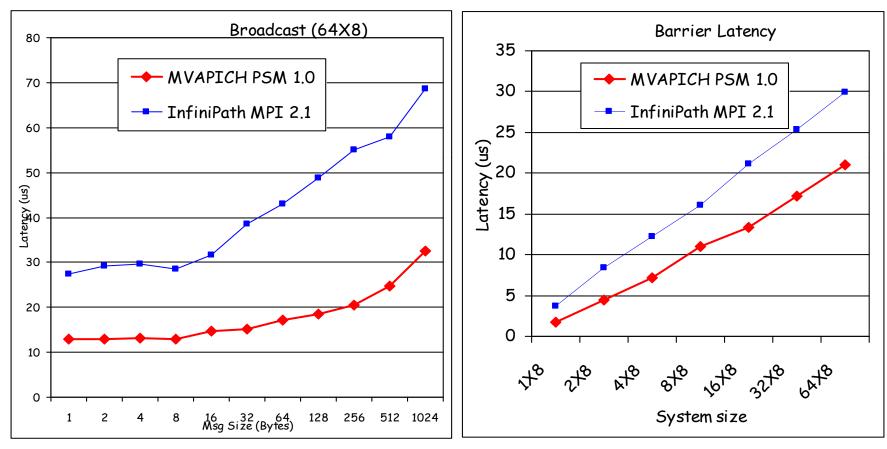

Results for other platforms at http://mvapich.cse.ohio-state.edu

Tsukuba, Oct 2, 2008

Design Insights and Sample Results

- Scalable Job Start-up
- Basic Performance
 - Two-sided Communication
 - One-sided Communication
- Multi-core-aware pt-to-pt communication
- Multi-core-aware Optimized Collective
- Integrated Multi-rail Design
- Scalability for Large-scale Systems (SRQ, UD, Hybrid & XRC)
- Applications-level Scalability
- Asynchronous Progress
- Fault Tolerance

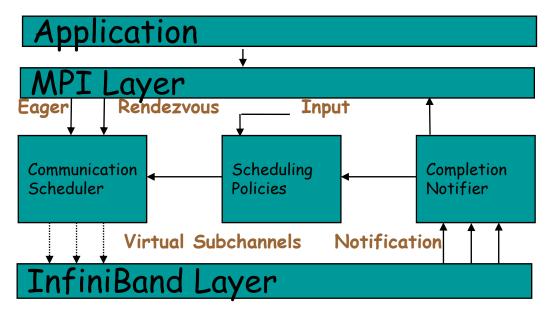

Multicore-aware Communication: Latency and Bandwidth


- Multicore-aware design improves both latency and bandwidth
- Available in MVAPICH and MVAPICH2 stacks

L. Chai, A. Hartono and D. K. Panda, "Designing High Performance and Scalable MPI Intra-node Communication Support for Clusters", Cluster '06

Shared-memory Aware Collectives

MVAPICH-PSM Collective Performance (512 cores)



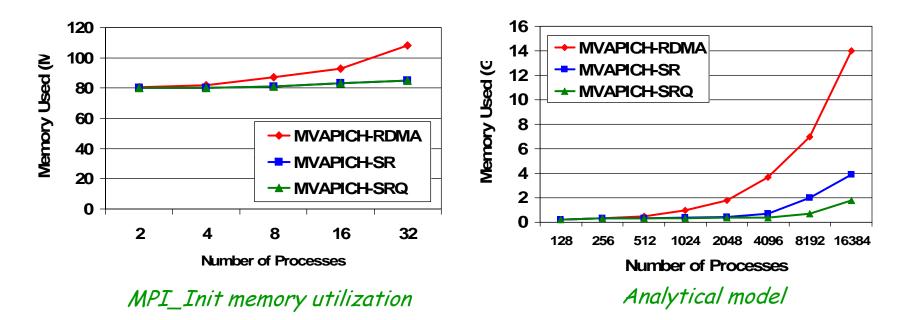
- \cdot 64 Intel Quad-core systems with dual sockets; PCIe InfiniPath Adapters
- Significant performance improvement for MPI_Bcast and MPI_Barrier

Design Insights and Sample Results

- Scalable Job Start-up
- Basic Performance
 - Two-sided Communication
 - One-sided Communication
- Multi-core-aware pt-to-pt communication
- Multi-core-aware Optimized Collective
- Integrated Multi-rail Design
- Scalability for Large-scale Systems (SRQ, UD, Hybrid & XRC)
- Applications-level Scalability
- Asynchronous Progress
- Fault Tolerance

Integrated Multi-Rail Design (MVAPICH2)

- Multiple ports/ adapters
- Multiple adapters
- Multiple paths with LMCs

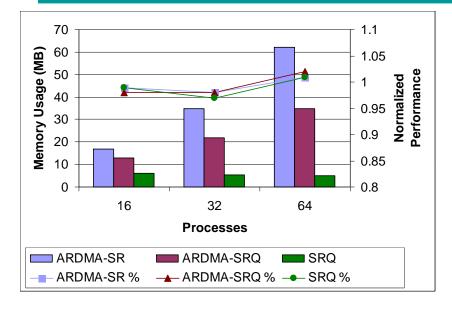

J. Liu, A. Vishnu and D. K. Panda. Building MultiRail InfiniBand Clusters: MPI Level Design and Performance Evaluation. Presented at Supercomputing '04, April, 2004

•

Design Insights and Sample Results

- Scalable Job Start-up
- Basic Performance
 - Two-sided Communication
 - One-sided Communication
- Multi-core-aware pt-to-pt communication
- Multi-core-aware Optimized Collective
- Integrated Multi-rail Design
- Scalability for Large-scale Systems (SRQ, UD, Hybrid & XRC)
- Applications-level Scalability
- Asynchronous Progress
- Fault Tolerance

Memory Utilization using Shared Receive Queues



- SRQ consumes only 1/10th compared to RDMA for 16,000 processes
- Send/Recv exhausts the *Buffer Pool* after 1000 processes; consumes 2X memory as SRQ for 16,000 processes

S. Sur, L. Chai, H. -W. Jin and D. K. Panda, "Shared Receive Queue Based Scalable MPI Design for InfiniBand Clusters", IPDPS 2006

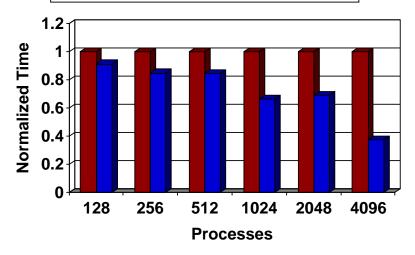
Tsukuba, Oct 2, 2008

Communication Buffer Memory Utilization with NAMD (apoal)

Avg. RDMA channels	53.15
Avg. Low watermarks	0.03
Unexpected Msgs (%)	48.2
Total Messages	3.7e6
MPI Time (%)	23.54

- 50% messages < 128 Bytes, other 50% between 128 Bytes and 32 KB
 - 53 RDMA connections setup for 64 process experiment
- SRQ Channel takes **5-6MB** of memory
 - Memory needed by SRQ decreases by 1MB going from 16 to 64

S. Sur, M. Koop and D. K. Panda, "High-Performance and Scalable MPI over InfiniBand with Reduced Memory Usage: An In-Depth Performance Analysis", SC '06

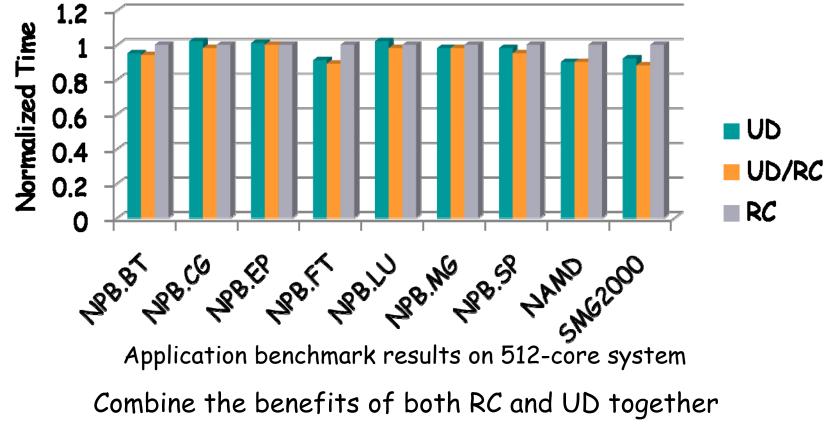

UD vs. RC: Performance and Scalability (SMG2000 Application)

Memory Usage (MB/process)

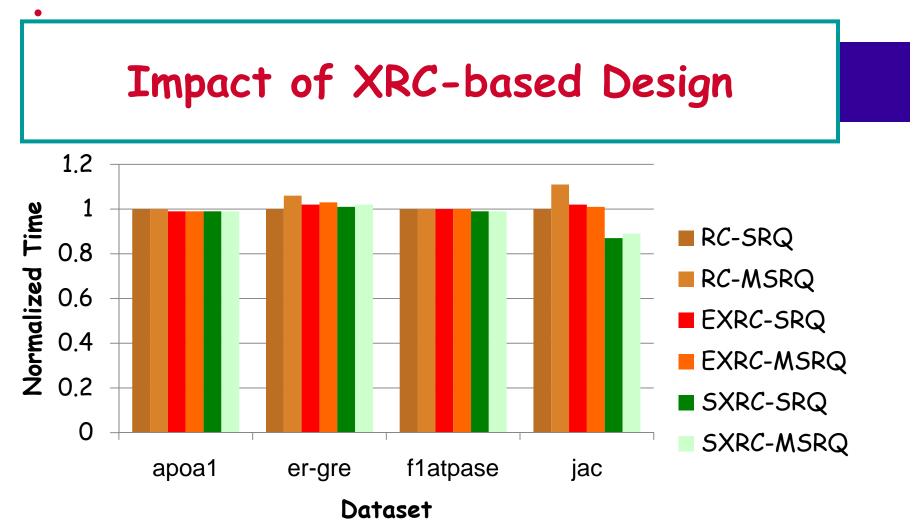
	RC (MVAPICH 0.9.8)			UD Design			
	Conn.	Buffers	Struct.	Total	Buffers	Struct	Total
512	22.9	65.0	0.3	88.2	37.0	0.2	37.2
1024	29.5	65.0	0.6	95.1	37.0	0.4	37.4
2048	42.4	65.0	1.2	107.4	37.0	0.9	37.9
4096	66.7	65.0	2.4	134.1	37.0	1.7	38.7

Performance

■ RC (MVAPICH 0.9.8) ■ UD (Progress)



- Large number of peers per process (992 at maximum)
 - UD reduces HCA QP cache thrashing

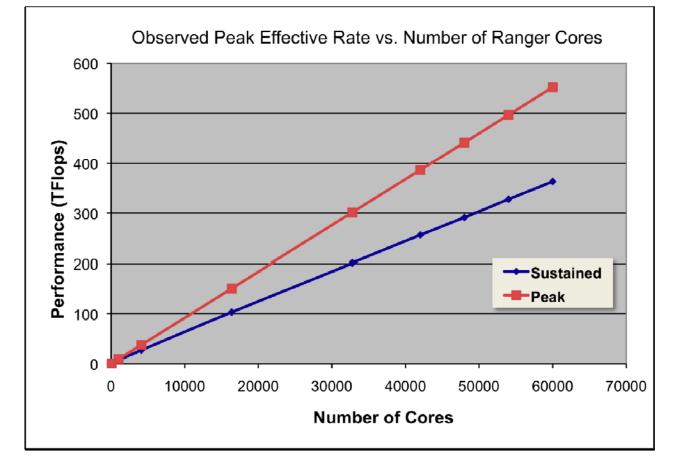

M. Koop, S. Sur, Q. Gao and D. K. Panda, "High Performance MPI Design using Unreliable Datagram for Ultra-Scale InfiniBand Clusters," ICS '07

Tsukuba, Oct 2, 2008

Impact of Hybrid RC/UD Design

- For the jac dataset RC-MSRQ shows 10% worse performance
 - HCA cache is likely being thrashed
 - SXRC modes show higher performance since less QPs are being used (and are staying in cache)

M. Koop, J. Sridhar and D. K. Panda, "*Scalable MPI Design over InfiniBand using eXtended Reliable Connection*," Cluster '08 Tsukuba, Oct 2, 2008

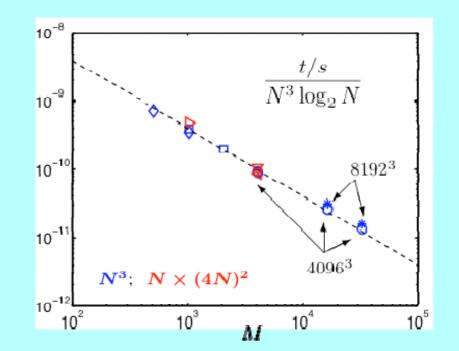

• • • • • • •

Performance of HPC Applications on TACC Ranger using MVAPICH + IB

Rob Farber's facial recognition application was run up to 60K cores using MVAPICH

•

 Ranges from 84% of peak at low end to 65% of peak at high end


http://www.tacc.utexas.edu/research/users/features/index.php?m_b_c=farber

Performance of HPC Applications on TACC Ranger: DNS/Turbulence

- 3D FFT flop count $\propto N^3 \log_2 N$
- Perfect scaling:

 $\frac{t/s}{N^3 \log_2 N} \propto M^{-1}$

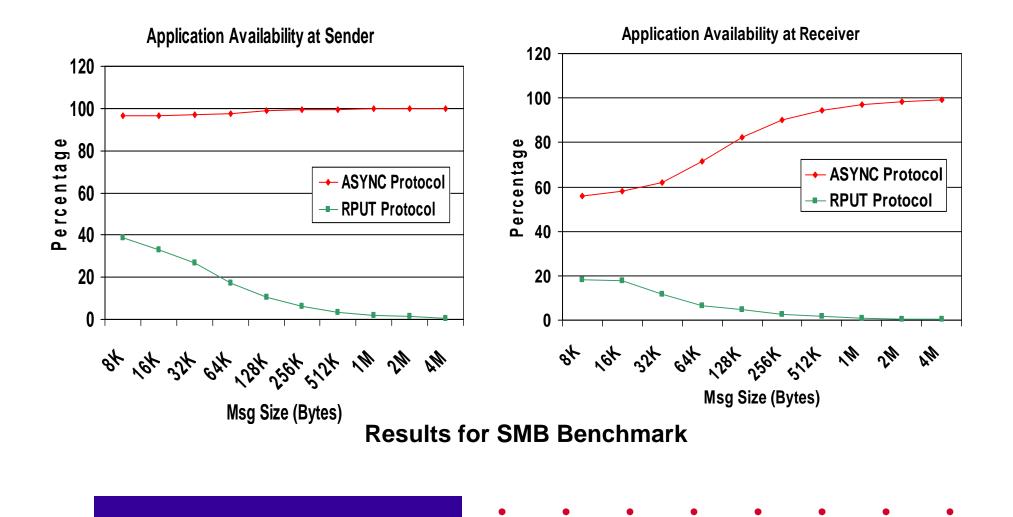
- Strong scaling: > 98% at both 4096³ and 8192³ from M = 16K to 32K
- Weak scaling: ~ 80% from
 (N, M) = (2048, 2048)
 to (8192, 32768)

eung, Diego Donzis. TG 20

 Best timings for small M₁: row communicator within node (16 cores) or within socket (4 cores)

Cluster '08

Design Insights and Sample Results


- Scalable Job Start-up
- Basic Performance
 - Two-sided Communication
 - One-sided Communication
- Multi-core-aware pt-to-pt communication
- Multi-core-aware Optimized Collective
- Integrated Multi-rail Design
- Scalability for Large-scale Systems (SRQ, UD, Hybrid & XRC)
- Applications-level Scalability
- Asynchronous Progress
- Fault Tolerance

Asynchronous Progress

- Asynchronous progress (both at sender and receiver) in MVAPICH 1.0
- Design has been enhanced to a lock-free design in MVAPICH 1.1
- Potential for overlap of computation and communication

R. Kumar, A. Mamidala, M. Koop, G. Santhanaraman and D.K. Panda, <u>Lock-free</u> <u>Asynchronous Rendezvous Design for MPI Point-to-Point Communication</u>, EuroPVM/MPI 2008, September 2008.

Asynchronous Progress (Mellanox DDR)

Design Insights and Sample Results

- Scalable Job Start-up
- Basic Performance
 - Two-sided Communication
 - One-sided Communication
- Multi-core-aware pt-to-pt communication
- Multi-core-aware Optimized Collective
- Integrated Multi-rail Design
- Scalability for Large-scale Systems (SRQ, UD, Hybrid & XRC)
- Applications-level Scalability
- Asynchronous Progress
- Fault Tolerance

Fault Tolerance

- Component failures are common in large-scale clusters
- Imposes need on reliability and fault tolerance
- Working along the following three angles
 - Reliable Networking with Automatic Path Migration (APM) utilizing Redundant Communication Paths (available since MVAPICH 1.0 and MVAPICH2 1.0 onward)
 - Process Fault Tolerance with Efficient Checkpoint and Restart (available since MVAPICH2 0.9.8)
 - End-to-end Reliability with memory-to-memory CRC (available since MVAPICH 0.9.9) Tsukuba, Oct 2, 2008

Network Fault-Tolerance with APM

- Network Fault Tolerance using InfiniBand Automatic Path Migration (APM)
 - Utilizes Redundant Communication Paths
 - Multiple Ports
 - · LMC
- Supported in OFED 1.2

A. Vishnu, A. Mamidala, S. Narravula and D. K. Panda, "Automatic Path Migration over InfiniBand: Early Experiences", Third International Workshop on System Management Techniques, Processes, and Services, held in conjunction with IPDPS '07

Screenshots: MPI Bandwidth Test with APM

vishnu@d0-as4:osu_benchmarks]/bin/mpicc osu_bw.c -o bw	
vishnu@d0-as4:osu_benchmarks]/bin/mpirun_rsh -np 2 d0 d2 Shell-Konsole	32 ./bw Session Edit View Bookmarks Settings Help
Session Edit View Bookmarks Settings Help	[vishnu@d0-as4:osu_benchmarks]/bin/mpicc osu_bw.c -o bw
	[vishnu@d0-as4:osu_benchmarks]/bin/mpirun_rsh -np 2 d0 d2 ./bw
OSU MPI Bandwidth Test (Version 2.0)	# OSU MPI Bandwidth Test (Version 2.0)
Size Bandwidth (MB/s)	# Size Bandwidth (MB/s)
0.373559	1 0.373559
0.747114	2 0.747114
1.490513	4 1.490513
2.988996	8 2.988996
6 5.946056 2 11.945174	16 5.946056
2 11.945174	32 11.945174
4 23.590665	64 23.590665
28 46.239120	128 46.239120
56 93.798126	256 93.798126
12 186.516700	512 186.516700
.024 314.423889	1024 314.423889
463.672961	2048 463.672961
096 598.296021	4096 598.296021
524.364033	8192 524.364033
.6384 662.966714	16384 662.966714
2768 756.540699	32768 756.540699
5536 807.360500	65536 807.360500
.31072 838.894691	131072 838.894691
<pre>myrank[0], [*] Moving to alternate path successful</pre>	myrank[0], [*] Moving to alternate path successful
myrank[1], [*] Moving to alternate path successful	<pre>myrank[1], [*] Moving to alternate path successful</pre>
62144 840.104995	<u>2</u> 62144 840.104995
24288 880.535211	
048576 885.337897	
097152 885.839118	
194304 885.855238	
[vishnu@d0-as4:osu_benchmarks]	A B Shell

Checkpoint-Restart Support in MVAPICH2

- Process-level Fault Tolerance
 - User-transparent, system-level checkpointing
 - Based on BLCR from LBNL to take coordinated checkpoints of entire program, including front end and individual processes
 - Designed novel schemes to
 - Coordinate all MPI processes to drain all in flight messages in IB connections
 - Store communication state & buffers while checkpointing
 - Restarting from the checkpoint
- Systems-level checkpoint can be initiated from the application (added in MVAPICH2 1.0)

A Running Example (Cont.)

Terminal A:

LU is running

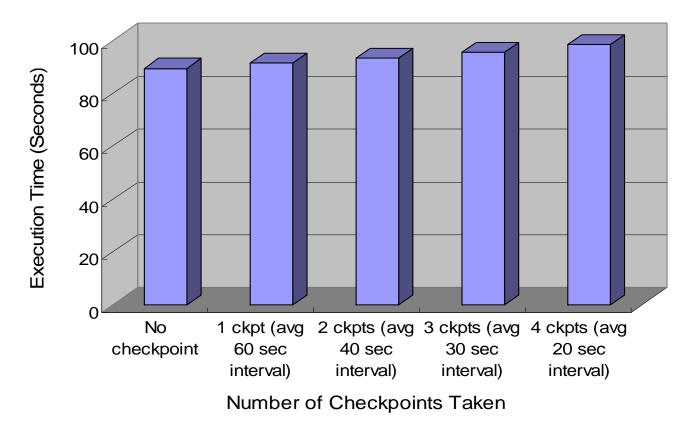
Terminal B: Now, Take checkpoint

Listeleontithe programs

×	gaoq@cs33-gen2:~/mvapich2-0.9.8	= 0 x y gaoq@cs33gen2://mvapich2-0.9.8	= 6 X
<u>File Edit View Terminal Tabs H</u> elp		Elle Edit View Terminal Talgs Help	
gaoq@cs33-gen2:~/mvapich2-0.9.8	gaoq@cs33-gen2:~/mvapich2-0.9.8	gaoq@cs33.gen2:-/mvapich2-0.9.8 gaoq@cs33.gen2:-/mvapich2-0.9.8	
[gaoq@cs33-gen2 mvapich2-0.9.8]\$ NAS Parallel Benchmarks 2.2 1		[gaoq@cs33-gen2 mvapich2-0.9.8]\$ mv2_checkpoint PID USER TT COMMAND %CPU VSZ START CMD 19183 gaoq pts/0 mpiexec 0.0 18236 14:05 mpiexec -n 32 ./lu.C.32	
Size: 162x162x162 Iterations: 250 Number of processes: 32 Time step 1 Time step 20 Time step 40 Time step 60 Time step 80 Time step 100		Enter PID to checkpoint or Control-C to exit: 19183 Checkpointing PID 19183 Checkpoint file: context.19183 [gaoq@cs33-gen2 mvapich2-0.9.8]\$]	
Time step 120			
 Image: applications Actions Solutions (€ 100 €		■	
	1		

A Running Example (Cont.)

Terminal A:


LU is not affected. Stop it using CTRL-C

Terminal B: Then, restart from the checkpoint

×	gaoq@cs33-gen2:~/mvapich2-0.9.8	= 8 x v gaoq⊕cs33-gen2:~/m	wapich2-0.9.8
<u>File Edit View Terminal Tabs H</u> elp		<u>Eile E</u> dit <u>V</u> iew <u>T</u> erminal Ta <u>b</u> s <u>H</u> elp	
			aoq@cs33-gen2:~/mvapich2-0.9.8
<pre>Fix Edit Vor Tennial Tabs Hebp page(5339-c).mmaph2420.9.8 [gaoq@ccs33-gen2 mvapich2-0.9.8]\$ mpiexe NAS Parallel Benchmarks 2.2 LU Benck Size: 162x162x162 Iterations: 250 Number of processes: 32 Time step 1 Time step 20 Time step 20 Time step 40 Time step 40 Time step 60 Time step 100 Time step 120 Time step 120 Time step 140 CTRL+C Caught exiting [gaoq@ccs33-gen2 mvapich2-0.9.8]\$]</pre>		gaoq@cs33-gen2_mwaptch209.8 [gaoq@cs33-gen2 mwapich2-0.9.8]\$ mv2_checkpoint PID USER TT COMMAND %CPU VSZ ST	1:05 mpiexec -n 32 ./lu.C.32 13 1:t.19183
 Image: gaoq@cs33:gen2-// image: gaoq Applications Actions image: image: gaoq 		↓	
	4	5	

Checkpoint-Restart Performance with PVFS2

NAS, LU Class C, 32x1 (Storage: 8 PVFS2 servers on IPoIB)

Q. Gao, W. Yu, W. Huang and D.K. Panda, "Application-Transparent Checkpoint/Restart for MPI over InfiniBand", ICPP '06

Presentation Overview

- Overview of InfiniBand
 - Features
 - Products (Hardware and Software)
 - Trends
- MVAPICH and MVAPICH2 Features
- Design Insights and Sample Performance Numbers
- Future Plans
- Conclusions and Final Q&A

Future Plans

- Most of the focus toward MVAPICH2
- Further enhancements to scalable job start-up
- Kernel-based (LiMIC2) shared memory pt-to-pt communication
- Optimization of collectives and one-sided communication based on new LIMIC2 shared memory communication
- Passive synchronization support for one-sided
- Flexible process binding for multi-rails
- Optimization of collectives
 - XRC
 - multi-rail
- Automatic tuning framework for pt-to-pt and collectives
- Network reliability (transparent recovery in case of adapter failure)
- Job pause-restart framework
- Performance and Memory scalability toward 100-200K cores

Conclusions

- MVAPICH and MVAPICH2 are being widely used in stable production IB clusters delivering best performance and scalability
- Also enabling clusters with 10GigE/iWARP support
- The user base stands at more than 765 organizations worldwide
- New features for scalability, high performance and fault tolerance support are aimed to deploy large-scale clusters (100-200K) nodes in the near future

Funding Acknowledgments

Our research is supported by the following organizations

• Current Funding support by

• Current Equipment support by

Personnel Acknowledgments

Current Students

- L. Chai (Ph.D.)
- T. Gangadharappa (M. S.)
- K. Gopalakrishnan (M. S.)
- M. Koop (Ph.D.)
- P. Lai (Ph. D.)
- G. Marsh (Ph. D.)
- X. Ouyang (Ph.D.)
- G. Santhanaraman (Ph.D.)
- J. Sridhar (M. S.)
- H. Subramoni (M. S.)

Current Programmer

- J. Perkins

Past Students

- P. Balaji (Ph.D.)
- D. Buntinas (Ph.D.)
- S. Bhagvat (M.S.)
- B. Chandrasekharan (M.S.)
- W. Jiang (M.S.)
- W. Huang (Ph.D.)
- S. Kini (M.S.)
- R. Kumar (M.S.)
- S. Krishnamoorthy (M.S.)
- J. Liu (Ph.D.)
- A. Mamidala (Ph.D.)
- S. Narravula (Ph.D.)
- R. Noronha (Ph.D.)
- S. Sur (Ph.D.)

- K. Vaidyanathan (Ph.D.)
- R. Noronha (Ph.D.)
- S. Sur (Ph.D.)
- K. Vaidyanathan (Ph.D.)
- A. Vishnu (Ph.D.)
- J. Wu (Ph.D.)
- W. Yu (Ph.D.)