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Our algorithm takes DVFS 
overhead for transition into 
acount in a HPC cluster.
Both PDP and EDP can be re-
duced compared with those at 
standard (the fastest) gear.

Profile-based Power-Performance 
Optimization by Using DVFS
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Instrument the program at selected region 
(function and loops, communication) 

to get execution profile

Execute the program with various DVFS 
settings to collect power/execution profiles

Compute the optimal DVFS scheduling for 
each region from power/execution profiles

Apply the optimal DVFS 
scheduling for actual runs

Algorithm & Experimental Result 

Execution Profile 

Power Profile 

 HPC Cluster System Design by Adaptive Power Control
Conventional Design
     Number of nodes is decided to satisfy
   Sum of Peak Power  ≤  Cooling Limit
Proposed Design
     Key observation : Effective power seldom reaches peak power
     Number of nodes is decided to satisfy
              Sum of Effective Power  ≤  Cooling Limit
     More nodes integrated         Higher performance achieved
     To satisfy the constraint,  runtime controller adjusts effective power by using DVFS
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while(application_run){
  Pnow = Get_Power();

  if(Pnow > Plimit){
      Down_DVS();
      Tsafe = 0;
  }else if(Tsafe == Titvl){
      Up_DVS();
      Tsafe = 0;
  }
  Sleep(Tsampling);
  Tsafe += Tsampling;
}

Monitor 
power consumption 

every Tsampling

Select lower 
clock / voltage

Select higher 
clock / voltage 

every Titvl to keep 
high performance

Runtime Control Algorithm
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Experimental Result

Effective power of conventional 
design is far below the power limit
Proposed system can fully utilize 
the available power budget

56.7% performance improvement 
(on average)
Proposed system can use up to 
10 nodes (conventional: 8 nodes) 
and higher clock frequency

Performance
Improvement

Power Profile

standard (the fastest) gear optimized
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Energy Reduction Algorithm 
Using Slack Reclamation 
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Power profile of tree-based parallel program.
Energy reduction by 11.8% without performance impact.

An energy reduction algorithm for parallel program repre-
sented in directed acyclic task graph (DAG).
Our alogorithm shifts the gear for a non-crithical path as 
low and uniformly as possible reclaiming its slack. 


