
Power-Aware Computing

Power-Aware Computing
http://www.para.tutics.tut.ac.jp/megascale/

Our algorithm takes DVFS
overhead for transition into
acount in a HPC cluster.
Both PDP and EDP can be re-
duced compared with those at
standard (the fastest) gear.

Profile-based Power-Performance
Optimization by Using DVFS

R2
f２＝１.0GＨｚ

R1
f1=1.4GHz

R2
f２＝１.0GＨｚ

Add DVFS overhead

R1
f1=1.4GHz

R3
f3=1.0GHz

R3
f3=1.0GHz

R2
f２=１.0GＨｚ

R1
f1=1.4GHz

R2
f２=１.0GＨｚ

Add DVFS overhead Add DVFS overhead

R1
f1=1.4GHz

R3 R3

R2
f２=１.0GＨｚ

R1 R2
f２=１.0GＨｚ

R1R3 R3

III

II

I

Improvement to standard gear
0
5

10
15
20
25 EDPPDP

FTIS

[%]

.

1800MHz 1400MHz 800MHz

Profile Profile Profile

Instrument the program at selected region
(function and loops, communication)

to get execution profile

Execute the program with various DVFS
settings to collect power/execution profiles

Compute the optimal DVFS scheduling for
each region from power/execution profiles

Apply the optimal DVFS
scheduling for actual runs

Algorithm & Experimental Result

Execution Profile

Power Profile

 HPC Cluster System Design by Adaptive Power Control
Conventional Design
 Number of nodes is decided to satisfy
 Sum of Peak Power ≤ Cooling Limit
Proposed Design
 Key observation : Effective power seldom reaches peak power
 Number of nodes is decided to satisfy
 Sum of Effective Power ≤ Cooling Limit
 More nodes integrated Higher performance achieved
 To satisfy the constraint, runtime controller adjusts effective power by using DVFS

runtime controller

network

node0 node1 nodeN

power supply
current probe

cabinet n

clock / voltage
runtime controller

network

node0 node1 nodeN

power supply
current probe

cabinet n

clock / voltage

while(application_run){
 Pnow = Get_Power();

 if(Pnow > Plimit){
 Down_DVS();
 Tsafe = 0;
 }else if(Tsafe == Titvl){
 Up_DVS();
 Tsafe = 0;
 }
 Sleep(Tsampling);
 Tsafe += Tsampling;
}

Monitor
power consumption

every Tsampling

Select lower
clock / voltage

Select higher
clock / voltage

every Titvl to keep
high performance

Runtime Control Algorithm

0

20

40

60

80

100
[%]

AVG.MGLUISFTCGEPHPL

Proposed Conventional

0 20 40 60 80
[sec]

250

300

350

400
[W] limit

Experimental Result

Effective power of conventional
design is far below the power limit
Proposed system can fully utilize
the available power budget

56.7% performance improvement
(on average)
Proposed system can use up to
10 nodes (conventional: 8 nodes)
and higher clock frequency

Performance
Improvement

Power Profile

standard (the fastest) gear optimized

1
20

0.6
60

1
40

1
20

A

B

C

D

F

1
60

0.6
40

E0 0

C

A

Power

Proc.1

Proc.2

B

E

D F

sync. sync.sync.

time

time

Energy Reduction Algorithm
Using Slack Reclamation

1
20

1
36

1
40

1
20

A

B

C

D

F

1
60

1
24

E40 36

C

A

Power

Proc .1

Proc. 2

B

E

D F

sync. time

time

slack

sync.sync.

0

5

10

15

20

25

30

0 0.1 0.2 0.3 0.4 0.5 0.6
time [sec]

power [W]

node 0 node 1 node 2 node 3

node 0

node 3 node 1

node 2

0

5

10

15

20

25

30

0 0.1 0.2 0.3 0.4 0.5 0.6
time [sec]

power [W]

node 0 node 1 node 2 node 3

node 0

node 2

node 3 node 1

Power profile of tree-based parallel program.
Energy reduction by 11.8% without performance impact.

An energy reduction algorithm for parallel program repre-
sented in directed acyclic task graph (DAG).
Our alogorithm shifts the gear for a non-crithical path as
low and uniformly as possible reclaiming its slack.

